Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On maps preserving the Jordan product of $C$-symmetric operators
Zouheir Amara and Mourad Oudghiri
Volume 65, no. 2
(2023),
pp. 263–275
Published online: October 27, 2023
https://doi.org/10.33044/revuma.2950
Download PDF
Abstract
Given a conjugation $C$ on a complex separable Hilbert space $H$, a bounded linear
operator $A$ acting on $H$ is said to be $C$-symmetric if $A=CA^*C$. In this paper, we
provide a complete description to all those maps on the algebra of linear operators acting
on a finite dimensional Hilbert space that preserve the Jordan product of $C$-symmetric
operators, in both directions, for every conjugation $C$ on $H$.
References
-
Z. Amara and M. Oudghiri, Nonlinear preservers problem of complex symmetric operators, Asian-Eur. J. Math. 14 no. 9 (2021), Paper No. 2150162, 18 pp. DOI MR Zbl
-
Z. Amara, M. Oudghiri, and K. Souilah, Complex symmetric operators and additive preservers problem, Adv. Oper. Theory 5 no. 1 (2020), 261–279. DOI MR Zbl
-
A. Bourhim and M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), 379–395. DOI MR Zbl
-
A. Fošner, B. Kuzma, T. Kuzma, and N.-S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear Multilinear Algebra 59 no. 5 (2011), 507–529. DOI MR Zbl
-
S. R. Garcia, Conjugation and Clark operators, in Recent Advances in Operator-Related Function Theory, Contemp. Math. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67–111. DOI MR Zbl
-
S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 no. 3 (2006), 1285–1315. DOI MR Zbl
-
S. R. Garcia and J. E. Tener, Unitary equivalence of a matrix to its transpose, J. Operator Theory 68 no. 1 (2012), 179–203. MR Zbl
-
S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 no. 4 (2009), 1251–1260. DOI MR Zbl
-
Y. Ji, T. Liu, and S. Zhu, On linear maps preserving complex symmetry, J. Math. Anal. Appl. 468 no. 2 (2018), 1144–1163. DOI MR Zbl
-
S. Jung, E. Ko, M. Lee, and J. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 no. 1 (2011), 325–333. DOI MR Zbl
-
B. Kuzma and T. Petek, Maps preserving unitarily invariant norms of Jordan product of matrices, J. Math. Anal. Appl. 455 no. 2 (2017), 1579–1596. DOI MR Zbl
-
E. Prodan, S. R. Garcia, and M. Putinar, Norm estimates of complex symmetric operators applied to quantum systems, J. Phys. A 39 no. 2 (2006), 389–400. DOI MR Zbl
-
X. Wang and Z. Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory 65 no. 4 (2009), 573–580. DOI MR Zbl
-
L. Zhao and J. Hou, Jordan zero-product preserving additive maps on operator algebras, J. Math. Anal. Appl. 314 no. 2 (2006), 689–700. DOI MR Zbl
|