Revista de la
Unión Matemática Argentina
Weighted mixed weak-type inequalities for multilinear fractional operators
M. Belén Picardi

Volume 65, no. 2 (2023), pp. 285–294    

Published online: November 6, 2023

https://doi.org/10.33044/revuma.3017

Download PDF

Abstract

The aim of this paper is to obtain mixed weak-type inequalities for multilinear fractional operators, extending results by Berra, Carena and Pradolini [J. Math. Anal. Appl. 479 (2019)]. We prove that, under certain conditions on the weights, there exists a constant $C$ such that \[ \Bigg\| \frac{\mathcal{G}_{\alpha}(\vec{f}\,)}{v}\Bigg\|_{L^{q, \infty}(\nu v^q)} \leq C \prod_{i=1}^m{\|f_i\|_{L^1(u_i)}}, \] where $\mathcal{G}_{\alpha}(\vec{f}\,)$ is the multilinear maximal function $\mathcal{M}_{\alpha}(\vec{f}\,)$ introduced by Moen [Collect. Math. 60 (2009)] or the multilineal fractional integral $\mathcal{I}_{\alpha}(\vec{f}\,)$. As an application, a vector-valued weighted mixed inequality for $\mathcal{I}_{\alpha}(\vec{f}\,)$ is provided.

References

  1. F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators, Michigan Math. J. 68 no. 3 (2019), 527–564.  DOI  MR  Zbl
  2. F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for fractional integrals and some related operators, J. Math. Anal. Appl. 479 no. 2 (2019), 1490–1505.  DOI  MR  Zbl
  3. F. Bombal, D. Pérez-García, and I. Villanueva, Multilinear extensions of Grothendieck's theorem, Q. J. Math. 55 no. 4 (2004), 441–450.  DOI  MR  Zbl
  4. D. Carando, M. Mazzitelli, and S. Ombrosi, Multilinear Marcinkiewicz-Zygmund inequalities, J. Fourier Anal. Appl. 25 no. 1 (2019), 51–85.  DOI  MR  Zbl
  5. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. no. 30 (2005), 1849–1871.  DOI  MR  Zbl
  6. C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.  DOI  MR  Zbl
  7. L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, NJ, 2004.  MR  Zbl
  8. L. Grafakos and J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal. 14 no. 1 (2004), 19–46.  DOI  MR  Zbl
  9. A. K. Lerner, S. Ombrosi, and C. Pérez, Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden, J. Fourier Anal. Appl. 15 no. 3 (2009), 394–403.  DOI  MR  Zbl
  10. A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 no. 4 (2009), 1222–1264.  DOI  MR  Zbl
  11. K. Li, J. M. Martell, and S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications, Adv. Math. 373 (2020), 107286, 43 pp.  DOI  MR  Zbl
  12. K. Li, S. Ombrosi, and C. Pérez, Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates, Math. Ann. 374 no. 1-2 (2019), 907–929.  DOI  MR  Zbl
  13. K. Li, S. J. Ombrosi, and M. Belén Picardi, Weighted mixed weak-type inequalities for multilinear operators, Studia Math. 244 no. 2 (2019), 203–215.  DOI  MR  Zbl
  14. K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 no. 2 (2009), 213–238.  DOI  MR  Zbl
  15. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.  DOI  MR  Zbl
  16. S. Ombrosi and C. Pérez, Mixed weak type estimates: examples and counterexamples related to a problem of E. Sawyer, Colloq. Math. 145 no. 2 (2016), 259–272.  DOI  MR  Zbl
  17. S. Ombrosi, C. Pérez, and J. Recchi, Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J. 65 no. 2 (2016), 615–640.  DOI  MR  Zbl
  18. E. Sawyer, A weighted weak type inequality for the maximal function, Proc. Amer. Math. Soc. 93 no. 4 (1985), 610–614.  DOI  MR  Zbl
  19. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.  MR  Zbl