Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Weighted mixed weak-type inequalities for multilinear fractional operators
M. Belén Picardi
Volume 65, no. 2
(2023),
pp. 285–294
Published online: November 6, 2023
https://doi.org/10.33044/revuma.3017
Download PDF
Abstract
The aim of this paper is to obtain mixed weak-type inequalities for multilinear fractional
operators, extending results by Berra, Carena and Pradolini [J. Math. Anal. Appl.
479 (2019)]. We prove that, under certain conditions on the weights, there exists
a constant $C$ such that \[ \Bigg\|
\frac{\mathcal{G}_{\alpha}(\vec{f}\,)}{v}\Bigg\|_{L^{q, \infty}(\nu v^q)} \leq C
\prod_{i=1}^m{\|f_i\|_{L^1(u_i)}}, \] where $\mathcal{G}_{\alpha}(\vec{f}\,)$ is the
multilinear maximal function $\mathcal{M}_{\alpha}(\vec{f}\,)$ introduced by Moen
[Collect. Math. 60 (2009)] or the multilineal fractional integral
$\mathcal{I}_{\alpha}(\vec{f}\,)$. As an application, a vector-valued weighted mixed
inequality for $\mathcal{I}_{\alpha}(\vec{f}\,)$ is provided.
References
-
F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators, Michigan Math. J. 68 no. 3 (2019), 527–564. DOI MR Zbl
-
F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for fractional integrals and some related operators, J. Math. Anal. Appl. 479 no. 2 (2019), 1490–1505. DOI MR Zbl
-
F. Bombal, D. Pérez-García, and I. Villanueva, Multilinear extensions of Grothendieck's theorem, Q. J. Math. 55 no. 4 (2004), 441–450. DOI MR Zbl
-
D. Carando, M. Mazzitelli, and S. Ombrosi, Multilinear Marcinkiewicz-Zygmund inequalities, J. Fourier Anal. Appl. 25 no. 1 (2019), 51–85. DOI MR Zbl
-
D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. no. 30 (2005), 1849–1871. DOI MR Zbl
-
C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. DOI MR Zbl
-
L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, NJ, 2004. MR Zbl
-
L. Grafakos and J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal. 14 no. 1 (2004), 19–46. DOI MR Zbl
-
A. K. Lerner, S. Ombrosi, and C. Pérez, Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden, J. Fourier Anal. Appl. 15 no. 3 (2009), 394–403. DOI MR Zbl
-
A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 no. 4 (2009), 1222–1264. DOI MR Zbl
-
K. Li, J. M. Martell, and S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications, Adv. Math. 373 (2020), 107286, 43 pp. DOI MR Zbl
-
K. Li, S. Ombrosi, and C. Pérez, Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates, Math. Ann. 374 no. 1-2 (2019), 907–929. DOI MR Zbl
-
K. Li, S. J. Ombrosi, and M. Belén Picardi, Weighted mixed weak-type inequalities for multilinear operators, Studia Math. 244 no. 2 (2019), 203–215. DOI MR Zbl
-
K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 no. 2 (2009), 213–238. DOI MR Zbl
-
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
-
S. Ombrosi and C. Pérez, Mixed weak type estimates: examples and counterexamples related to a problem of E. Sawyer, Colloq. Math. 145 no. 2 (2016), 259–272. DOI MR Zbl
-
S. Ombrosi, C. Pérez, and J. Recchi, Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J. 65 no. 2 (2016), 615–640. DOI MR Zbl
-
E. Sawyer, A weighted weak type inequality for the maximal function, Proc. Amer. Math. Soc. 93 no. 4 (1985), 610–614. DOI MR Zbl
-
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR Zbl
|