Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The John–Nirenberg inequality for Orlicz–Lorentz spaces in a probabilistic setting
Libo Li and Zhiwei Hao
Volume 65, no. 2
(2023),
pp. 347–360
Published online: November 29, 2023
https://doi.org/10.33044/revuma.3106
Download PDF
Abstract
The John–Nirenberg inequality is widely studied in the field of mathematical analysis and
probability theory. In this paper we study a new type of the John–Nirenberg inequality for
Orlicz–Lorentz spaces in a probabilistic setting. To be precise, let $0 < q \leq \infty$
and $\Phi$ be an $N$-function with some proper restrictions. We prove that if the
stochastic basis $\{\mathcal{F}_n\}_{n \geq 0}$ is regular, then $BMO_{\Phi,q}=BMO$, with
equivalent (quasi)-norms. The result is new, which improves previous work on martingale
Hardy theory.
References
-
C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, Boston, MA, 1988. MR Zbl
-
W. Chen, K.-P. Ho, Y. Jiao, and D. Zhou, Weighted mixed-norm inequality on Doob's maximal operator and John-Nirenberg inequalities in Banach function spaces, Acta Math. Hungar. 157 no. 2 (2019), 408–433. DOI MR Zbl
-
A. M. Garsia, Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Note Series, W. A. Benjamin, Reading, Mass., 1973. MR Zbl
-
L. Grafakos, Classical Fourier Analysis, second ed., Graduate Texts in Mathematics 249, Springer, New York, 2008. DOI MR Zbl
-
Z. Hao and L. Li, Grand martingale Hardy spaces, Acta Math. Hungar. 153 no. 2 (2017), 417–429. DOI MR Zbl
-
Z. Hao and L. Li, Orlicz-Lorentz Hardy martingale spaces, J. Math. Anal. Appl. 482 no. 1 (2020), 123520, 27 pp. DOI MR Zbl
-
G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, second ed., Cambridge, at the University Press, 1952. MR Zbl
-
C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199–215. DOI MR Zbl
-
K.-P. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math. 65 no. 3 (2014), 985–1009. DOI MR Zbl
-
G. Hong and T. Mei, John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J. Funct. Anal. 263 no. 4 (2012), 1064–1097. DOI MR Zbl
-
Y. Jiao, L. Wu, and L. Peng, Weak Orlicz-Hardy martingale spaces, Internat. J. Math. 26 no. 8 (2015), 1550062, 26 pp. DOI MR Zbl
-
Y. Jiao, L. Wu, A. Yang, and R. Yi, The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc. 369 no. 1 (2017), 537–553. DOI MR Zbl
-
Y. Jiao, D. Zhou, Z. Hao, and W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal. 10 no. 4 (2016), 750–770. DOI MR Zbl
-
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. DOI MR Zbl
-
M. Junge and M. Musat, A noncommutative version of the John-Nirenberg theorem, Trans. Amer. Math. Soc. 359 no. 1 (2007), 115–142. DOI MR Zbl
-
A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29–38. DOI MR Zbl
-
L. Li, A remark on John-Nirenberg theorem for martingales, Ukrainian Math. J. 70 no. 11 (2019), 1812–1820. DOI MR Zbl
-
L. Long, H. Tian, and D. Zhou, Interpolation of martingale Orlicz-Hardy spaces, Acta Math. Hungar. 163 no. 1 (2021), 276–294. DOI MR Zbl
-
R. L. Long, Martingale Spaces and Inequalities, Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, 1993. DOI MR Zbl
-
S. J. Montgomery-Smith, Orlicz-Lorentz spaces, in Proceedings of the Orlicz Memorial Conference, Oxford, Mississippi, 1991.
-
S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 no. 2 (1992), 161–189. DOI MR Zbl
-
J. Neveu, Discrete-Parameter Martingales, revised ed., North-Holland Mathematical Library 10, North-Holland, Amsterdam-Oxford; American Elsevier, New York, 1975. MR Zbl
-
M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991. MR Zbl
-
I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. (N.S.) 63(105) (1964), 536–553. MR Zbl Available at https://eudml.org/doc/69615.
-
F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Mathematics 1568, Springer-Verlag, Berlin, 1994. DOI MR Zbl
-
R. Yi, L. Wu, and Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett. 86 (2014), 68–73. DOI MR Zbl
|