Revista de la
Unión Matemática Argentina
The John–Nirenberg inequality for Orlicz–Lorentz spaces in a probabilistic setting
Libo Li and Zhiwei Hao

Volume 65, no. 2 (2023), pp. 347–360    

Published online: November 29, 2023

https://doi.org/10.33044/revuma.3106

Download PDF

Abstract

The John–Nirenberg inequality is widely studied in the field of mathematical analysis and probability theory. In this paper we study a new type of the John–Nirenberg inequality for Orlicz–Lorentz spaces in a probabilistic setting. To be precise, let $0 < q \leq \infty$ and $\Phi$ be an $N$-function with some proper restrictions. We prove that if the stochastic basis $\{\mathcal{F}_n\}_{n \geq 0}$ is regular, then $BMO_{\Phi,q}=BMO$, with equivalent (quasi)-norms. The result is new, which improves previous work on martingale Hardy theory.

References

  1. C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, Boston, MA, 1988.  MR  Zbl
  2. W. Chen, K.-P. Ho, Y. Jiao, and D. Zhou, Weighted mixed-norm inequality on Doob's maximal operator and John-Nirenberg inequalities in Banach function spaces, Acta Math. Hungar. 157 no. 2 (2019), 408–433.  DOI  MR  Zbl
  3. A. M. Garsia, Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Note Series, W. A. Benjamin, Reading, Mass., 1973.  MR  Zbl
  4. L. Grafakos, Classical Fourier Analysis, second ed., Graduate Texts in Mathematics 249, Springer, New York, 2008.  DOI  MR  Zbl
  5. Z. Hao and L. Li, Grand martingale Hardy spaces, Acta Math. Hungar. 153 no. 2 (2017), 417–429.  DOI  MR  Zbl
  6. Z. Hao and L. Li, Orlicz-Lorentz Hardy martingale spaces, J. Math. Anal. Appl. 482 no. 1 (2020), 123520, 27 pp.  DOI  MR  Zbl
  7. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, second ed., Cambridge, at the University Press, 1952.  MR  Zbl
  8. C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199–215.  DOI  MR  Zbl
  9. K.-P. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math. 65 no. 3 (2014), 985–1009.  DOI  MR  Zbl
  10. G. Hong and T. Mei, John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J. Funct. Anal. 263 no. 4 (2012), 1064–1097.  DOI  MR  Zbl
  11. Y. Jiao, L. Wu, and L. Peng, Weak Orlicz-Hardy martingale spaces, Internat. J. Math. 26 no. 8 (2015), 1550062, 26 pp.  DOI  MR  Zbl
  12. Y. Jiao, L. Wu, A. Yang, and R. Yi, The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc. 369 no. 1 (2017), 537–553.  DOI  MR  Zbl
  13. Y. Jiao, D. Zhou, Z. Hao, and W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal. 10 no. 4 (2016), 750–770.  DOI  MR  Zbl
  14. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.  DOI  MR  Zbl
  15. M. Junge and M. Musat, A noncommutative version of the John-Nirenberg theorem, Trans. Amer. Math. Soc. 359 no. 1 (2007), 115–142.  DOI  MR  Zbl
  16. A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29–38.  DOI  MR  Zbl
  17. L. Li, A remark on John-Nirenberg theorem for martingales, Ukrainian Math. J. 70 no. 11 (2019), 1812–1820.  DOI  MR  Zbl
  18. L. Long, H. Tian, and D. Zhou, Interpolation of martingale Orlicz-Hardy spaces, Acta Math. Hungar. 163 no. 1 (2021), 276–294.  DOI  MR  Zbl
  19. R. L. Long, Martingale Spaces and Inequalities, Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, 1993.  DOI  MR  Zbl
  20. S. J. Montgomery-Smith, Orlicz-Lorentz spaces, in Proceedings of the Orlicz Memorial Conference, Oxford, Mississippi, 1991.
  21. S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 no. 2 (1992), 161–189.  DOI  MR  Zbl
  22. J. Neveu, Discrete-Parameter Martingales, revised ed., North-Holland Mathematical Library 10, North-Holland, Amsterdam-Oxford; American Elsevier, New York, 1975.  MR  Zbl
  23. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991.  MR  Zbl
  24. I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. (N.S.) 63(105) (1964), 536–553.  MR  Zbl Available at https://eudml.org/doc/69615.
  25. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Mathematics 1568, Springer-Verlag, Berlin, 1994.  DOI  MR  Zbl
  26. R. Yi, L. Wu, and Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett. 86 (2014), 68–73.  DOI  MR  Zbl