Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The minimal number of homogeneous geodesics depending on the signature of the Killing form
Zdeněk Dušek
Volume 65, no. 2
(2023),
pp. 361–374
Published online: November 29, 2023
https://doi.org/10.33044/revuma.3132
Download PDF
Abstract
The existence of at least two homogeneous geodesics in any homogeneous Finsler manifold
was proved in a previous paper by the author. The examples of solvable Lie groups with
invariant Finsler metric which admit just two homogeneous geodesics were presented in
another paper. In the present work, it is shown that a homogeneous Finsler manifold with
indefinite Killing form admits at least four homogeneous geodesics. Examples of invariant
Randers metrics on Lie groups with definite Killing form admitting just two homogeneous
geodesics and examples with indefinite Killing form admitting just four homogeneous
geodesics are presented.
References
-
D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer-Verlag, New York, 2000. DOI MR Zbl
-
S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, Springer, New York, 2012. DOI MR Zbl
-
Z. Dušek, The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds, J. Geom. Phys. 60 no. 5 (2010), 687–689. DOI MR Zbl
-
Z. Dušek, The affine approach to homogeneous geodesics in homogeneous Finsler spaces, Arch. Math. (Brno) 54 no. 5 (2018), 257–263. DOI MR Zbl
-
Z. Dušek, The existence of homogeneous geodesics in special homogeneous Finsler spaces, Mat. Vesnik 71 no. 1-2 (2019), 16–22. MR Zbl Available at http://www.vesnik.math.rs/landing.php?p=mv1912.cap&name=mv191202.
-
Z. Dušek, The existence of two homogeneous geodesics in Finsler geometry, Symmetry 11(7) (2019), Paper No. 850, 5 pp. DOI
-
Z. Dušek, Homogeneous Randers spaces admitting just two homogeneous geodesics, Arch. Math. (Brno) 55 no. 5 (2019), 281–288. DOI MR Zbl
-
Z. Dušek, Geodesic graphs in Randers g.o. spaces, Comment. Math. Univ. Carolin. 61 no. 2 (2020), 195–211. DOI MR Zbl
-
O. Kowalski, S. Nikčević, and Z. Vlášek, Homogeneous geodesics in homogeneous Riemannian manifolds—examples, in Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), World Scientific, River Edge, NJ, 2000, pp. 104–112. DOI MR Zbl
-
O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 no. 1-3 (2000), 209–214, Erratum: Geom. Dedicata 84 no. 1-3 (2001), 331–332. DOI MR Zbl
-
O. Kowalski and Z. Vlášek, Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62 no. 3-4 (2003), 437–446. DOI MR Zbl
-
D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 no. 5 (2007), 1421–1433. DOI MR Zbl
-
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York, 1983. MR Zbl
-
Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001. DOI MR Zbl
-
Z. Yan and S. Deng, Existence of homogeneous geodesics on homogeneous Randers spaces, Houston J. Math. 44 no. 2 (2018), 481–493. MR Zbl
-
Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsler spaces, J. Geom. Phys. 124 (2018), 264–267. DOI MR Zbl
|