Revista de la
Unión Matemática Argentina
The minimal number of homogeneous geodesics depending on the signature of the Killing form
Zdeněk Dušek

Volume 65, no. 2 (2023), pp. 361–374    

Published online: November 29, 2023

https://doi.org/10.33044/revuma.3132

Download PDF

Abstract

The existence of at least two homogeneous geodesics in any homogeneous Finsler manifold was proved in a previous paper by the author. The examples of solvable Lie groups with invariant Finsler metric which admit just two homogeneous geodesics were presented in another paper. In the present work, it is shown that a homogeneous Finsler manifold with indefinite Killing form admits at least four homogeneous geodesics. Examples of invariant Randers metrics on Lie groups with definite Killing form admitting just two homogeneous geodesics and examples with indefinite Killing form admitting just four homogeneous geodesics are presented.

References

  1. D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer-Verlag, New York, 2000.  DOI  MR  Zbl
  2. S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, Springer, New York, 2012.  DOI  MR  Zbl
  3. Z. Dušek, The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds, J. Geom. Phys. 60 no. 5 (2010), 687–689.  DOI  MR  Zbl
  4. Z. Dušek, The affine approach to homogeneous geodesics in homogeneous Finsler spaces, Arch. Math. (Brno) 54 no. 5 (2018), 257–263.  DOI  MR  Zbl
  5. Z. Dušek, The existence of homogeneous geodesics in special homogeneous Finsler spaces, Mat. Vesnik 71 no. 1-2 (2019), 16–22.  MR  Zbl Available at http://www.vesnik.math.rs/landing.php?p=mv1912.cap&name=mv191202.
  6. Z. Dušek, The existence of two homogeneous geodesics in Finsler geometry, Symmetry 11(7) (2019), Paper No. 850, 5 pp.  DOI
  7. Z. Dušek, Homogeneous Randers spaces admitting just two homogeneous geodesics, Arch. Math. (Brno) 55 no. 5 (2019), 281–288.  DOI  MR  Zbl
  8. Z. Dušek, Geodesic graphs in Randers g.o. spaces, Comment. Math. Univ. Carolin. 61 no. 2 (2020), 195–211.  DOI  MR  Zbl
  9. O. Kowalski, S. Nikčević, and Z. Vlášek, Homogeneous geodesics in homogeneous Riemannian manifolds—examples, in Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), World Scientific, River Edge, NJ, 2000, pp. 104–112.  DOI  MR  Zbl
  10. O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 no. 1-3 (2000), 209–214, Erratum: Geom. Dedicata 84 no. 1-3 (2001), 331–332.  DOI  MR  Zbl
  11. O. Kowalski and Z. Vlášek, Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62 no. 3-4 (2003), 437–446.  DOI  MR  Zbl
  12. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 no. 5 (2007), 1421–1433.  DOI  MR  Zbl
  13. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York, 1983.  MR  Zbl
  14. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.  DOI  MR  Zbl
  15. Z. Yan and S. Deng, Existence of homogeneous geodesics on homogeneous Randers spaces, Houston J. Math. 44 no. 2 (2018), 481–493.  MR  Zbl
  16. Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsler spaces, J. Geom. Phys. 124 (2018), 264–267.  DOI  MR  Zbl