Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Coupling local and nonlocal equations with Neumann boundary conditions
Gabriel Acosta, Francisco Bersetche, and Julio D. Rossi
Volume 65, no. 2
(2023),
pp. 533–565
Published online: December 28, 2023
https://doi.org/10.33044/revuma.3046
Download PDF
Abstract
We introduce two different ways of coupling local and nonlocal equations with Neumann
boundary conditions in such a way that the resulting model is naturally associated with an
energy functional. For these two models we prove that there is a minimizer of the
resulting energy that is unique modulo adding a constant.
References
-
G. Acosta, F. Bersetche, and J. D. Rossi, Local and nonlocal energy-based coupling models, SIAM J. Math. Anal. 54 no. 6 (2022), 6288–6322. DOI MR Zbl
-
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Nonlocal Diffusion Problems, {Mathematical Surveys and Monographs} {165}, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. DOI MR Zbl
-
Y. Azdoud, F. Han, and G. Lubineau, A morphing framework to couple non-local and local anisotropic continua, Int. J. Solids Struct. 50 no. 9 (2013), 1332–1341. DOI
-
S. Badia, P. Bochev, R. Lehoucq, M. Parks, J. Fish, M. A. Nuggehally, and M. Gunzburger, A force-based blending model for atomistic-to-continuum coupling, Int. J. Multiscale Comput. Eng. 5 no. 5 (2007), 387–406. DOI
-
S. Badia, M. Parks, P. Bochev, M. Gunzburger, and R. Lehoucq, On atomistic-to-continuum coupling by blending, Multiscale Model. Simul. 7 no. 1 (2008), 381–406. DOI MR Zbl
-
P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions, J. Statist. Phys. 95 no. 5-6 (1999), 1119–1139. DOI MR Zbl
-
H. Berestycki, A.-C. Coulon, J.-M. Roquejoffre, and L. Rossi, The effect of a line with nonlocal diffusion on {F}isher-{KPP} propagation, Math. Models Methods Appl. Sci. 25 no. 13 (2015), 2519–2562. DOI MR Zbl
-
H. Brezis, \emph{Functional Analysis, {S}obolev Spaces and Partial Differential Equations}, {Universitext}, Springer, New York, 2011. MR Zbl
-
M. Capanna and J. D. Rossi, Mixing local and nonlocal evolution equations, Mediterr. J. Math. 20 no. 2 (2023), Paper No. 59, 36 pp. DOI MR Zbl
-
C. Carrillo and P. Fife, Spatial effects in discrete generation population models, J. Math. Biol. 50 no. 2 (2005), 161–188. DOI MR Zbl
-
E. Chasseigne, M. Chaves, and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9) 86 no. 3 (2006), 271–291. DOI MR Zbl
-
C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations 234 no. 2 (2007), 360–390. DOI MR Zbl
-
C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with {N}eumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal. 187 no. 1 (2008), 137–156. DOI MR Zbl
-
M. D'Elia and P. Bochev, Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method, Results Appl. Math. 9 (2021), Paper No. 100129, 20 pp. DOI MR Zbl
-
M. D'Elia, X. Li, P. Seleson, X. Tian, and Y. Yu, A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics, J. Peridyn. Nonlocal Model. 4 no. 1 (2022), 1–50. DOI MR
-
M. D'Elia, M. Perego, P. Bochev, and D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl. 71 no. 11 (2016), 2218–2230. DOI MR Zbl
-
M. D'Elia, D. Ridzal, K. J. Peterson, P. Bochev, and M. Shashkov, Optimization-based mesh correction with volume and convexity constraints, J. Comput. Phys. 313 (2016), 455–477. DOI MR Zbl
-
M. Di Paola, G. Failla, and M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory, J. Elasticity 97 no. 2 (2009), 103–130. DOI MR Zbl
-
Q. Du, X. H. Li, J. Lu, and X. Tian, A quasi-nonlocal coupling method for nonlocal and local diffusion models, SIAM J. Numer. Anal. 56 no. 3 (2018), 1386–1404. DOI MR Zbl
-
L. C. Evans, Partial Differential Equations, second ed., {Graduate Studies in Mathematics} {19}, American Mathematical Society, Providence, RI, 2010. MR Zbl
-
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, 2003, pp. 153–191. MR Zbl
-
C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations 42 no. 4 (2017), 579–625. DOI MR Zbl
-
A. Gárriz, F. Quirós, and J. D. Rossi, Coupling local and nonlocal evolution equations, Calc. Var. Partial Differential Equations 59 no. 4 (2020), Paper No. 112, 24 pp. DOI MR Zbl
-
F. Han and G. Lubineau, Coupling of nonlocal and local continuum models by the {A}rlequin approach, Internat. J. Numer. Methods Engrg. 89 no. 6 (2012), 671–685. DOI MR Zbl
-
V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, J. Math. Biol. 47 no. 6 (2003), 483–517. DOI MR Zbl
-
D. Kriventsov, Regularity for a local-nonlocal transmission problem, Arch. Ration. Mech. Anal. 217 no. 3 (2015), 1103–1195. DOI MR Zbl
-
T. Mengesha and Q. Du, The bond-based peridynamic system with {D}irichlet-type volume constraint, Proc. Roy. Soc. Edinburgh Sect. A 144 no. 1 (2014), 161–186. DOI MR Zbl
-
L. E. Payne and H. F. Weinberger, An optimal {P}oincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). DOI MR Zbl
-
B. C. dos Santos, S. M. Oliva, and J. D. Rossi, A local/nonlocal diffusion model, Appl. Anal. 101 no. 15 (2022), 5213–5246. DOI MR Zbl
-
P. Seleson, S. Beneddine, and S. Prudhomme, A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci. 66 (2013), 34–49. DOI
-
P. Seleson and M. Gunzburger, Bridging methods for atomistic-to-continuum coupling and their implementation, Commun. Comput. Phys. 7 no. 4 (2010), 831–876. DOI MR Zbl
-
P. Seleson, M. Gunzburger, and M. L. Parks, Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains, Comput. Methods Appl. Mech. Engrg. 266 (2013), 185–204. DOI MR Zbl
-
S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 no. 1 (2000), 175–209. DOI MR Zbl
-
S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, J. Elasticity 88 no. 2 (2007), 151–184. DOI MR Zbl
-
S. A. Silling and R. B. Lehoucq, Peridynamic theory of solid mechanics, Adv. Appl. Mech. 44 no. 1 (2010), 73–168. DOI
-
C. Strickland, G. Dangelmayr, and P. D. Shipman, Modeling the presence probability of invasive plant species with nonlocal dispersal, J. Math. Biol. 69 no. 2 (2014), 267–294. DOI MR Zbl
-
X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations 183 no. 2 (2002), 434–461. DOI MR Zbl
-
L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations 197 no. 1 (2004), 162–196. DOI MR Zbl
|