Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Abel ergodic theorems for $\alpha$-times integrated semigroups
Fatih Barki and Abdelaziz Tajmouati
Volume 65, no. 2
(2023),
pp. 567–586
Published online: December 29, 2023
https://doi.org/10.33044/revuma.2661
Download PDF
Abstract
Let ${T(t)}_{t\geq 0}$ be an $\alpha$-times integrated semigroup of bounded linear
operators on the Banach space $\mathcal{X}$ and let $A$ be their generator. In this paper,
we study the uniform convergence of the Abel averages $\mathcal{A} (\lambda) =
\lambda^{\alpha +1} \int_{0}^{\infty} e^{-\lambda t} T(t)\,dt$ as $\lambda \to 0^+$, with
$\alpha \geq 0$. More precisely, we show that the following conditions are equivalent: (i)
$T(t)$ is uniformly Abel ergodic; (ii) $\mathcal{X}= \mathcal{R}(A)\oplus
\mathcal{N}(A)$, with $\mathcal{R}(A)$ closed; (iii) $\|\lambda^2 R(\lambda,A)\|
\longrightarrow 0$ as $\lambda\to 0^+$, and $\mathcal{R}(A^k)$ is closed for some integer
$k$; (iv) $A$ is $a$-Drazin invertible and $\mathcal{R}(A^k)$ is closed for some $k\geq
1$; where $\mathcal{N}(A)$, $\mathcal{R}(A)$ and $R(\lambda,A)$ are the kernel, the range,
and the resolvent function of $A$, respectively. Additionally, we show that if $T(t)$
satisfies $\lim_{t\to \infty}\|T(t)\|/ t^{\alpha+1}=0$, then $T(t)$ is uniformly Abel
ergodic if and only if $\frac{1}{t^{\alpha+1}}\int_{0}^{t}T(s)\,ds$ converges uniformly as
$t \to +\infty$. Finally, we examine simultaneously this theory with the uniform power
convergence of the Abel averages $\mathcal{A} (\lambda)$ for some $\lambda>0$.
References
-
W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 no. 3 (1987), 327–352. DOI MR Zbl
-
W. Arendt and H. Kellermann, Integrated solutions of Volterra integrodifferential equations and applications, in Volterra Integrodifferential Equations in Banach Spaces and Applications (Trento, 1987), Pitman Res. Notes Math. Ser. 190, Longman Sci. Tech., Harlow, 1989, pp. 21–51. MR Zbl
-
F. Barki, Cesàro and Abel ergodic theorems for integrated semigroups, Concr. Oper. 8 no. 1 (2021), 135–149. DOI MR Zbl
-
F. Barki, A. Tajmouati, and A. El Bakkali, Uniform and mean ergodic theorems for $C_0$-semigroups, Methods Funct. Anal. Topology 27 no. 2 (2021), 130–141. DOI MR Zbl
-
E. Boasso, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. R. Ir. Acad. 115A no. 2 (2015), 121–135. DOI MR Zbl
-
P. L. Butzer and J. J. Koliha, The $a$-Drazin inverse and ergodic behaviour of semigroups and cosine operator functions, J. Operator Theory 62 no. 2 (2009), 297–326. MR Zbl
-
M. Elin, S. Reich, and D. Shoikhet, Numerical Range of Holomorphic Mappings and Applications, Birkhäuser/Springer, Cham, 2019. DOI MR Zbl
-
K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, New York, 2000. DOI MR Zbl
-
A. Gessinger, Connections between the approximation and ergodic behaviour of cosine operators and semigroups, in Proceedings of the Third International Conference on Functional Analysis and Approximation Theory (Acquafredda di Maratea, 1996), Rend. Circ. Mat. Palermo (2) Suppl., no. 52, vol. II, 1998, pp. 475–489. MR Zbl
-
M. Hieber, Laplace transforms and $\alpha$-times integrated semigroups, Forum Math. 3 no. 6 (1991), 595–612. DOI MR Zbl
-
E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, rev. ed., American Mathematical Society Colloquium Publications 31, American Mathematical Society, Providence, RI, 1957. MR Zbl
-
J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 no. 3 (1996), 367–381. DOI MR Zbl
-
Y. Kozitsky, D. Shoikhet, and J. Zemánek, Power convergence of Abel averages, Arch. Math. (Basel) 100 no. 6 (2013), 539–549. DOI MR Zbl
-
U. Krengel, Ergodic Theorems, De Gruyter Studies in Mathematics 6, De Gruyter, Berlin, 1985. DOI MR Zbl
-
M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340. DOI MR Zbl
-
M. Lin, On the uniform ergodic theorem. II, Proc. Amer. Math. Soc. 46 (1974), 217–225. DOI MR Zbl
-
M. Lin, D. Shoikhet, and L. Suciu, Remarks on uniform ergodic theorems, Acta Sci. Math. (Szeged) 81 no. 1-2 (2015), 251–283. DOI MR Zbl
-
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. DOI MR Zbl
-
S.-Y. Shaw, Uniform ergodic theorems for locally integrable semigroups and pseudoresolvents, Proc. Amer. Math. Soc. 98 no. 1 (1986), 61–67. DOI MR Zbl
-
S.-Y. Shaw, Uniform ergodic theorems for operator semigroups, in Proceedings of the Analysis Conference, Singapore 1986, North-Holland Math. Stud. 150, North-Holland, Amsterdam, 1988, pp. 261–265. DOI MR Zbl
-
A. Tajmouati, A. El Bakkali, F. Barki, and M. A. Ould Mohamed Baba, On the uniform ergodic for $\alpha$-times integrated semigroups, Bol. Soc. Parana. Mat. (3) 39 no. 4 (2021), 9–20. MR Zbl
-
A. Tajmouati, M. Karmouni, and F. Barki, Abel ergodic theorem for $C_0$-semigroups, Adv. Oper. Theory 5 no. 4 (2020), 1468–1479. DOI MR Zbl
-
A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, second ed., Wiley, New York, 1980. MR Zbl
-
H. R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 no. 2 (1990), 416–447. DOI MR Zbl
-
K. Yosida, Functional Analysis, third ed., Die Grundlehren der mathematischen Wissenschaften 123, Springer-Verlag, New York, 1971. Zbl
|