Revista de la
Unión Matemática Argentina
Some inequalities for Lagrangian submanifolds in holomorphic statistical manifolds of constant holomorphic sectional curvature
Yan Jiang, Dandan Cai, and Liang Zhang

Volume 65, no. 2 (2023), pp. 587–609    

Published online: December 29, 2023

https://doi.org/10.33044/revuma.2812

Download PDF

Abstract

We obtain two types of inequalities for Lagrangian submanifolds in holomorphic statistical manifolds of constant holomorphic sectional curvature. One relates the Oprea invariant to the mean curvature, the other relates the Chen invariant to the mean curvature. Our results generalize the corresponding inequalities for Lagrangian submanifolds in complex space forms.

References

  1. S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics 28, Springer-Verlag, New York, 1985.  DOI  MR  Zbl
  2. M. E. Aydin, A. Mihai, and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29 no. 3 (2015), 465–477.  DOI  MR  Zbl
  3. M. E. Aydin, A. Mihai, and I. Mihai, Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Bull. Math. Sci. 7 no. 1 (2017), 155–166.  DOI  MR  Zbl
  4. B.-Y. Chen, A Riemannian invariant and its applications to submanifold theory, Results Math. 27 no. 1-2 (1995), 17–26.  DOI  MR  Zbl
  5. B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 no. 1 (1999), 33–41.  DOI  MR  Zbl
  6. B.-Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. (N.S.) 26 no. 1 (2000), 105–127.  DOI  MR  Zbl
  7. B.-Y. Chen and F. Dillen, Optimal general inequalities for Lagrangian submanifolds in complex space forms, J. Math. Anal. Appl. 379 no. 1 (2011), 229–239.  DOI  MR  Zbl
  8. S. Decu, S. Haesen, and L. Verstraelen, Optimal inequalities involving Casorati curvatures, Bull. Transilv. Univ. Braşov Ser. B (N.S.) 14(49), suppl. (2007), 85–93.  MR  Zbl
  9. H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl. 27 no. 3 (2009), 420–429.  DOI  MR  Zbl
  10. H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, in Geometry of Cauchy-Riemann Submanifolds, Springer, Singapore, 2016, pp. 179–215.  DOI  MR  Zbl
  11. H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117 (2017), 179–186.  DOI  MR  Zbl
  12. T. Kurose, Geometry of statistical manifolds, in Mathematics in the 21st Century, Nippon Hyoron Sha, 2004, pp. 34–43.
  13. C. W. Lee, D. W. Yoon, and J. W. Lee, A pinching theorem for statistical manifolds with Casorati curvatures, J. Nonlinear Sci. Appl. 10 no. 9 (2017), 4908–4914.  DOI  MR  Zbl
  14. H. Matsuzoe, Statistical manifolds and affine differential geometry, in Probabilistic Approach to Geometry, Adv. Stud. Pure Math. 57, Math. Soc. Japan, Tokyo, 2010, pp. 303–321.  DOI  MR  Zbl
  15. C. R. Min, S. O. Choe, and Y. H. An, Statistical immersions between statistical manifolds of constant curvature, Glob. J. Adv. Res. Class. Mod. Geom. 3 no. 2 (2014), 66–75.  MR Available at https://web.archive.org/web/20200716233636/https://geometry-math-journal.ro/pdf/Volume3-Issue2/3.pdf.
  16. T. Oprea, Generalization of Chen's inequality, Algebras Groups Geom. 23 no. 1 (2006), 93–103.  MR  Zbl
  17. T. Oprea, Chen's inequality in the Lagrangian case, Colloq. Math. 108 no. 1 (2007), 163–169.  DOI  MR  Zbl
  18. T. Oprea, On a Riemannian invariant of Chen type, Rocky Mountain J. Math. 38 no. 2 (2008), 567–581.  DOI  MR  Zbl
  19. H. Shima and K. Yagi, Geometry of Hessian manifolds, Differential Geom. Appl. 7 no. 3 (1997), 277–290.  DOI  MR  Zbl
  20. A. N. Siddiqui and M. H. Shahid, On totally real statistical submanifolds, Filomat 32 no. 13 (2018), 4473–4483.  DOI  MR  Zbl
  21. P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Statist. Math. 41 no. 3 (1989), 429–450.  DOI  MR  Zbl
  22. K. Yano and M. Kon, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Progress in Mathematics 30, Birkhäuser, Boston, MA, 1983.  MR  Zbl