Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The principal small intersection graph of a commutative ring
Soheila Khojasteh
Volume 67, no. 1
(2024),
pp. 245–256
Published online: May 19, 2024
https://doi.org/10.33044/revuma.3486
Download PDF
Abstract
Let $R$ be a commutative ring with non-zero identity. The small intersection graph of $R$,
denoted by $G(R)$, is a graph with the vertex set $V(G(R))$, where $V(G(R))$ is the set of
all proper non-small ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if
and only if $I \cap J$ is not small in $R$. In this paper, we introduce a certain subgraph
$PG(R)$ of $G(R)$, called the principal small intersection graph of $R$. It is the
subgraph of $G(R)$ induced by the set of all proper principal non-small ideals of $R$. We
study the diameter, the girth, the clique number, the independence number and the
domination number of $PG(R)$. Moreover, we present some results on the complement of the
principal small intersection graph.
References
-
S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra 42 no. 4 (2014), 1594–1605. DOI MR Zbl
-
S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 no. 1 (2012), Paper no. 1250019, 8 pp. DOI MR Zbl
-
D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 no. 7 (2008), 2706–2719. DOI MR Zbl
-
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447. DOI MR Zbl
-
S. E. Atani, S. D. Pish Hesari, and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin. 58 no. 1 (2017), 1–12. DOI MR Zbl
-
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969. MR
-
I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392. DOI MR Zbl
-
B. Csákány and G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslovak Math. J. 19 (94) no. 2 (1969), 241–247. DOI MR Zbl
-
F. Heydari, The $M$-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 no. 3 (2018), Paper no. 1850038, 11 pp. DOI MR Zbl
-
S. Khojasteh, The intersection graph of ideals of $\mathbb{Z}_m$, Discrete Math. Algorithms Appl. 11 no. 4 (2019), Paper no. 1950037, 12 pp. DOI MR Zbl
-
S. Khojasteh, The complement of the intersection graph of ideals of a poset, J. Algebra Appl. 22 no. 11 (2023), Paper no. 2350236, 13 pp. DOI MR Zbl
-
R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts 19, Cambridge University Press, Cambridge, 1990. MR Zbl
-
R. Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. MR Zbl
|