Revista de la
Unión Matemática Argentina
The principal small intersection graph of a commutative ring
Soheila Khojasteh

Volume 67, no. 1 (2024), pp. 245–256    

Published online: May 19, 2024

https://doi.org/10.33044/revuma.3486

Download PDF

Abstract

Let $R$ be a commutative ring with non-zero identity. The small intersection graph of $R$, denoted by $G(R)$, is a graph with the vertex set $V(G(R))$, where $V(G(R))$ is the set of all proper non-small ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I \cap J$ is not small in $R$. In this paper, we introduce a certain subgraph $PG(R)$ of $G(R)$, called the principal small intersection graph of $R$. It is the subgraph of $G(R)$ induced by the set of all proper principal non-small ideals of $R$. We study the diameter, the girth, the clique number, the independence number and the domination number of $PG(R)$. Moreover, we present some results on the complement of the principal small intersection graph.

References

  1. S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra 42 no. 4 (2014), 1594–1605.  DOI  MR  Zbl
  2. S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 no. 1 (2012), Paper no. 1250019, 8 pp.  DOI  MR  Zbl
  3. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 no. 7 (2008), 2706–2719.  DOI  MR  Zbl
  4. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447.  DOI  MR  Zbl
  5. S. E. Atani, S. D. Pish Hesari, and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin. 58 no. 1 (2017), 1–12.  DOI  MR  Zbl
  6. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969.  MR
  7. I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392.  DOI  MR  Zbl
  8. B. Csákány and G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslovak Math. J. 19 (94) no. 2 (1969), 241–247.  DOI  MR  Zbl
  9. F. Heydari, The $M$-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 no. 3 (2018), Paper no. 1850038, 11 pp.  DOI  MR  Zbl
  10. S. Khojasteh, The intersection graph of ideals of $\mathbb{Z}_m$, Discrete Math. Algorithms Appl. 11 no. 4 (2019), Paper no. 1950037, 12 pp.  DOI  MR  Zbl
  11. S. Khojasteh, The complement of the intersection graph of ideals of a poset, J. Algebra Appl. 22 no. 11 (2023), Paper no. 2350236, 13 pp.  DOI  MR  Zbl
  12. R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts 19, Cambridge University Press, Cambridge, 1990.  MR  Zbl
  13. R. Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.  MR  Zbl