Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Cofinite modules and cofiniteness of local cohomology modules
Alireza Vahidi, Ahmad Khaksari, and Mohammad Shirazipour
Volume 67, no. 1
(2024),
pp. 317–325
Published online: June 3, 2024
https://doi.org/10.33044/revuma.3535
Download PDF
Abstract
Let $n$ be a non-negative integer, $R$ a commutative Noetherian ring, $\mathfrak{a}$ an
ideal of $R$, $M$ a finitely generated $R$-module, and $X$ an arbitrary $R$-module.
In this paper, we first prove that if $\dim_R(M)\leq{n+2}$, then
$\operatorname{H}^{i}_{\mathfrak{a}}(M)$ is an $(\operatorname{FD}_{ <
n},\mathfrak{a})$-cofinite $R$-module and
$\{\mathfrak{p}\in\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(M)):\dim(R/\mathfrak{p})\geq{n}\}$
is a finite set for all $i$. As a consequence, it follows that
$\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(M))$ is a finite set for all $i$
when $R$ is a semi-local ring and $\dim_R(M)\leq{3}$. Then, we show that if
$\dim(R/\mathfrak{a})\leq{n+1}$, then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an
$\operatorname{FD}_{ < n}$ $R$-module for all $i$ whenever
$\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$
$R$-module for all $i\leq{\dim_R(X)-n}$. Finally, in the case that
$\dim(R/\mathfrak{a})\leq{2}$, $X$ is $\mathfrak{a}$-torsion, and $n>0$ or
$\operatorname{Supp}_R(X)\cap\operatorname{Var}(\mathfrak{a})\cap\operatorname{Max}(R)$ is
finite, we prove that $X$ is an $(\operatorname{FD}_{ < n},\mathfrak{a})$-cofinite
$R$-module when $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{
< n}$ $R$-module for all $i\leq{2-n}$. We conclude with some ordinary
$\mathfrak{a}$-cofiniteness results for local cohomology modules
$\operatorname{H}^{i}_{\mathfrak{a}}(X)$.
References
-
N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 no. 1 (2015), 211–220. DOI MR Zbl
-
M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) no. 4 (2014), 347–356. MR Zbl
-
M. Aghapournahr, A. J. Taherizadeh, and A. Vahidi, Extension functors of local cohomology modules, Bull. Iranian Math. Soc. 37 no. 3 (2011), 117–134. MR Zbl
-
D. Asadollahi and R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 no. 3 (2015), 953–958. DOI MR Zbl
-
K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 no. 1 (2014), 62–68. DOI MR Zbl
-
K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 no. 7 (2008), 2359–2363. DOI MR Zbl
-
K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 no. 7 (2009), 1997–2011. DOI MR Zbl
-
K. Bahmanpour, R. Naghipour, and M. Sedghi, Cofiniteness with respect to ideals of small dimensions, Algebr. Represent. Theory 18 no. 2 (2015), 369–379. DOI MR Zbl
-
M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998. DOI MR Zbl
-
W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993. MR Zbl
-
G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 no. 1 (2000), 1–7. DOI MR Zbl
-
N. T. Cuong, S. Goto, and N. Van Hoang, On the cofiniteness of generalized local cohomology modules, Kyoto J. Math. 55 no. 1 (2015), 169–185. DOI MR Zbl
-
D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 no. 1 (1994), 79–84. DOI MR Zbl
-
D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 no. 1 (1997), 45–52. DOI MR Zbl
-
K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 no. 3 (2005), 655–660. DOI MR Zbl
-
K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 no. 2 (2006), 681–690. DOI MR Zbl
-
R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145–164. DOI MR Zbl
-
S. H. Hassanzadeh and A. Vahidi, On vanishing and cofiniteness of generalized local cohomology modules, Comm. Algebra 37 no. 7 (2009), 2290–2299. DOI MR Zbl
-
E. Hatami and M. Aghapournahr, Abelian category of weakly cofinite modules and local cohomology, Bull. Iranian Math. Soc. 47 no. 6 (2021), 1701–1714. DOI MR Zbl
-
C. Huneke, Problems on local cohomology, in Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108. MR Zbl
-
C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 no. 3 (1991), 421–429. DOI MR Zbl
-
H. Karimirad and M. Aghapournahr, Cominimaxness with respect to ideals of dimension two and local cohomology, J. Algebra Appl. 20 no. 5 (2021), Paper No. 2150081, 12 pp. DOI MR Zbl
-
K.-i. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 no. 1-2 (2011), 587–608. DOI MR Zbl
-
L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 no. 2 (2005), 649–668. DOI MR Zbl
-
L. Melkersson, Cofiniteness with respect to ideals of dimension one, J. Algebra 372 (2012), 459–462. DOI MR Zbl
-
J. J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009. DOI MR Zbl
-
A. K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 no. 2-3 (2000), 165–176. DOI MR Zbl
-
A. Vahidi, M. Aghapournahr, and E. Mahmoudi Renani, Finiteness dimensions and cofiniteness of local cohomology modules, Rocky Mountain J. Math. 51 no. 3 (2021), 1079–1088. DOI MR Zbl
-
A. Vahidi and S. Morsali, Cofiniteness with respect to the class of modules in dimension less than a fixed integer, Taiwanese J. Math. 24 no. 4 (2020), 825–840. DOI MR Zbl
-
A. Vahidi and M. Papari-Zarei, Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer, Rev. Un. Mat. Argentina 62 no. 1 (2021), 191–198. DOI MR Zbl
-
K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191. DOI MR Zbl
-
T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 no. 7 (2012), 2293–2305. DOI MR Zbl
|