Revista de la
Unión Matemática Argentina
Cofinite modules and cofiniteness of local cohomology modules
Alireza Vahidi, Ahmad Khaksari, and Mohammad Shirazipour

Volume 67, no. 1 (2024), pp. 317–325    

Published online: June 3, 2024

https://doi.org/10.33044/revuma.3535

Download PDF

Abstract

Let $n$ be a non-negative integer, $R$ a commutative Noetherian ring, $\mathfrak{a}$ an ideal of $R$, $M$ a finitely generated $R$-module, and $X$ an arbitrary $R$-module. In this paper, we first prove that if $\dim_R(M)\leq{n+2}$, then $\operatorname{H}^{i}_{\mathfrak{a}}(M)$ is an $(\operatorname{FD}_{ < n},\mathfrak{a})$-cofinite $R$-module and $\{\mathfrak{p}\in\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(M)):\dim(R/\mathfrak{p})\geq{n}\}$ is a finite set for all $i$. As a consequence, it follows that $\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(M))$ is a finite set for all $i$ when $R$ is a semi-local ring and $\dim_R(M)\leq{3}$. Then, we show that if $\dim(R/\mathfrak{a})\leq{n+1}$, then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$ $R$-module for all $i$ whenever $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$ $R$-module for all $i\leq{\dim_R(X)-n}$. Finally, in the case that $\dim(R/\mathfrak{a})\leq{2}$, $X$ is $\mathfrak{a}$-torsion, and $n>0$ or $\operatorname{Supp}_R(X)\cap\operatorname{Var}(\mathfrak{a})\cap\operatorname{Max}(R)$ is finite, we prove that $X$ is an $(\operatorname{FD}_{ < n},\mathfrak{a})$-cofinite $R$-module when $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$ $R$-module for all $i\leq{2-n}$. We conclude with some ordinary $\mathfrak{a}$-cofiniteness results for local cohomology modules $\operatorname{H}^{i}_{\mathfrak{a}}(X)$.

References

  1. N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 no. 1 (2015), 211–220.  DOI  MR  Zbl
  2. M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) no. 4 (2014), 347–356.  MR  Zbl
  3. M. Aghapournahr, A. J. Taherizadeh, and A. Vahidi, Extension functors of local cohomology modules, Bull. Iranian Math. Soc. 37 no. 3 (2011), 117–134.  MR  Zbl
  4. D. Asadollahi and R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 no. 3 (2015), 953–958.  DOI  MR  Zbl
  5. K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 no. 1 (2014), 62–68.  DOI  MR  Zbl
  6. K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 no. 7 (2008), 2359–2363.  DOI  MR  Zbl
  7. K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 no. 7 (2009), 1997–2011.  DOI  MR  Zbl
  8. K. Bahmanpour, R. Naghipour, and M. Sedghi, Cofiniteness with respect to ideals of small dimensions, Algebr. Represent. Theory 18 no. 2 (2015), 369–379.  DOI  MR  Zbl
  9. M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.  DOI  MR  Zbl
  10. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993.  MR  Zbl
  11. G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 no. 1 (2000), 1–7.  DOI  MR  Zbl
  12. N. T. Cuong, S. Goto, and N. Van Hoang, On the cofiniteness of generalized local cohomology modules, Kyoto J. Math. 55 no. 1 (2015), 169–185.  DOI  MR  Zbl
  13. D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 no. 1 (1994), 79–84.  DOI  MR  Zbl
  14. D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 no. 1 (1997), 45–52.  DOI  MR  Zbl
  15. K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 no. 3 (2005), 655–660.  DOI  MR  Zbl
  16. K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 no. 2 (2006), 681–690.  DOI  MR  Zbl
  17. R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145–164.  DOI  MR  Zbl
  18. S. H. Hassanzadeh and A. Vahidi, On vanishing and cofiniteness of generalized local cohomology modules, Comm. Algebra 37 no. 7 (2009), 2290–2299.  DOI  MR  Zbl
  19. E. Hatami and M. Aghapournahr, Abelian category of weakly cofinite modules and local cohomology, Bull. Iranian Math. Soc. 47 no. 6 (2021), 1701–1714.  DOI  MR  Zbl
  20. C. Huneke, Problems on local cohomology, in Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108.  MR  Zbl
  21. C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 no. 3 (1991), 421–429.  DOI  MR  Zbl
  22. H. Karimirad and M. Aghapournahr, Cominimaxness with respect to ideals of dimension two and local cohomology, J. Algebra Appl. 20 no. 5 (2021), Paper No. 2150081, 12 pp.  DOI  MR  Zbl
  23. K.-i. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 no. 1-2 (2011), 587–608.  DOI  MR  Zbl
  24. L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 no. 2 (2005), 649–668.  DOI  MR  Zbl
  25. L. Melkersson, Cofiniteness with respect to ideals of dimension one, J. Algebra 372 (2012), 459–462.  DOI  MR  Zbl
  26. J. J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009.  DOI  MR  Zbl
  27. A. K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 no. 2-3 (2000), 165–176.  DOI  MR  Zbl
  28. A. Vahidi, M. Aghapournahr, and E. Mahmoudi Renani, Finiteness dimensions and cofiniteness of local cohomology modules, Rocky Mountain J. Math. 51 no. 3 (2021), 1079–1088.  DOI  MR  Zbl
  29. A. Vahidi and S. Morsali, Cofiniteness with respect to the class of modules in dimension less than a fixed integer, Taiwanese J. Math. 24 no. 4 (2020), 825–840.  DOI  MR  Zbl
  30. A. Vahidi and M. Papari-Zarei, Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer, Rev. Un. Mat. Argentina 62 no. 1 (2021), 191–198.  DOI  MR  Zbl
  31. K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191.  DOI  MR  Zbl
  32. T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 no. 7 (2012), 2293–2305.  DOI  MR  Zbl