Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Two constructions of bialgebroids and their relations
Yudai Otsuto
Volume 67, no. 1
(2024),
pp. 339–395
Published online: June 25, 2024
https://doi.org/10.33044/revuma.2296
Download PDF
Abstract
We generalize the construction of face algebras by Hayashi and obtain a left bialgebroid
$\mathfrak{A}(w)$. There are some relations between the left bialgebroid $\mathfrak{A}(w)$
and the generalized Shibukawa–Takeuchi left bialgebroid $A_{\sigma}$.
References
-
R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193–228. DOI MR Zbl
-
S. Bennoun and H. Pfeiffer, Weak bialgebras of fractions, J. Algebra 385 (2013), 145–163. DOI MR Zbl
-
G. Böhm, F. Nill, and K. Szlachányi, Weak Hopf algebras. I. Integral theory and $C^*$-structure, J. Algebra 221 no. 2 (1999), 385–438. DOI MR Zbl
-
G. Böhm and K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, J. Algebra 274 no. 2 (2004), 708–750. DOI MR Zbl
-
V. G. Drinfelʹd, On some unsolved problems in quantum group theory, in Quantum groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, pp. 1–8. DOI MR Zbl
-
P. Etingof, T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 no. 2 (1999), 169–209. DOI MR Zbl
-
P. Etingof and A. Varchenko, Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups, Comm. Math. Phys. 196 no. 3 (1998), 591–640. DOI MR Zbl
-
L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, in Algebraic analysis, Vol. I, Academic Press, Boston, MA, 1988, pp. 129–139. DOI MR Zbl
-
J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville string field theory, Nuclear Phys. B 238 no. 1 (1984), 125–141. DOI MR
-
T. Hayashi, Quantum group symmetry of partition functions of IRF models and its application to Jones' index theory, Comm. Math. Phys. 157 no. 2 (1993), 331–345. MR Zbl Available at http://projecteuclid.org/euclid.cmp/1104253942.
-
T. Hayashi, Quantum groups and quantum semigroups, J. Algebra 204 no. 1 (1998), 225–254. DOI MR Zbl
-
D. K. Matsumoto and K. Shimizu, Quiver-theoretical approach to dynamical Yang-Baxter maps, J. Algebra 507 (2018), 47–80. DOI MR Zbl
-
J. B. McGuire, Study of exactly soluble one-dimensional $N$-body problems, J. Math. Phys. 5 (1964), 622–636. DOI MR Zbl
-
F. Nill, Axioms for weak bialgebras, 1998. arXiv:math/9805104 [math.QA].
-
Y. Otsuto, Two constructions of Hopf algebroids based on the FRT construction and their relations, Ph.D. thesis, Hokkaido University, 2022. DOI
-
Y. Otsuto and Y. Shibukawa, FRT construction of Hopf algebroids, Toyama Math. J. 42 (2021), 51–72. MR Zbl
-
P. Schauenburg, Duals and doubles of quantum groupoids ($\times_R$-Hopf algebras), in New trends in Hopf algebra theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 273–299. DOI MR Zbl
-
P. Schauenburg, Weak Hopf algebras and quantum groupoids, in Noncommutative geometry and quantum groups (Warsaw, 2001), Banach Center Publ. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 171–188. DOI MR Zbl
-
Y. Shibukawa, Dynamical Yang-Baxter maps, Int. Math. Res. Not. no. 36 (2005), 2199–2221. DOI MR Zbl
-
Y. Shibukawa, Dynamical Yang-Baxter maps with an invariance condition, Publ. Res. Inst. Math. Sci. 43 no. 4 (2007), 1157–1182. DOI MR Zbl
-
Y. Shibukawa, Hopf algebroids and rigid tensor categories associated with dynamical Yang-Baxter maps, J. Algebra 449 (2016), 408–445. DOI MR Zbl
-
Y. Shibukawa and M. Takeuchi, FRT construction for dynamical Yang-Baxter maps, J. Algebra 323 no. 6 (2010), 1698–1728. DOI MR Zbl
-
M. Takeuchi, Groups of algebras over $A\otimes \overline A$, J. Math. Soc. Japan 29 no. 3 (1977), 459–492. DOI MR Zbl
-
A. Veselov, Yang-Baxter maps: dynamical point of view, in Combinatorial aspect of integrable systems, MSJ Mem. 17, Math. Soc. Japan, Tokyo, 2007, pp. 145–167. DOI MR Zbl
-
C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315. DOI MR Zbl
|