Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Covering-based numbers related to the LS-category of finite spaces
Manuel Cárdenas, Ramón Flores, Antonio Quintero, and María Trinidad Villar-Liñán
Volume 68, no. 1
(2025),
pp. 205–229
Published online (final version): May 21, 2025
https://doi.org/10.33044/revuma.3601
Download PDF
Abstract
In this paper, we consider the Lusternik–Schnirelmann and geometric categories of finite
spaces. We define new numerical invariants for these spaces derived from the geometric
category and present an algorithmic approach for their effective computation. Our analysis
combines homotopy-theoretic properties of these spaces with algorithms and tools from
graph and hypergraph theory. We also provide several examples to illustrate our results.
References
-
C. G. T. de A. Moreira and Y. Kohayakawa, Bounds for optimal coverings, Discrete Appl. Math. 141 no. 1-3 (2004), 263–276. DOI MR Zbl
-
S. Aaronson and N. A. Scoville, Lusternik–Schnirelmann category for simplicial complexes, Illinois J. Math. 57 no. 3 (2013), 743–753. DOI MR Zbl
-
P. Alexandroff, Diskrete Räume, Rec. Math. Moscou, n. Ser. 2(44) no. 3 (1937), 501–519.
Available at https://mathnet.ru/eng/msb/v44/i3/p501.
Zbl
-
J. A. Barmak, Algebraic topology of finite topological spaces and applications, Lecture Notes in Math. 2032, Springer, Heidelberg, 2011. DOI MR Zbl
-
C. Berge, Hypergraphs, North-Holland Mathematical Library 45, North-Holland, Amsterdam, 1989. MR Zbl
-
E. Boros, V. Gurvich, L. Khachiyan, and K. Makino, Generating partial and multiple transversals of a hypergraph, in Automata, languages and programming (Geneva, 2000), Lecture Notes in Comput. Sci. 1853, Springer, Berlin, 2000, pp. 588–599. DOI MR Zbl
-
A. Bretto, Hypergraph theory, Mathematical Engineering, Springer, Cham, 2013. DOI MR Zbl
-
D. Cheng and H. Qi, Semi-tensor product of matrices—theory and applications, Science Press, Beijing, 2007.
-
D. Cheng, H. Qi, and Z. Li, Analysis and control of Boolean networks, Communications and Control Engineering Series, Springer London, London, 2011. DOI MR Zbl
-
E. Clader, Inverse limits of finite topological spaces, Homology Homotopy Appl. 11 no. 2 (2009), 223–227. DOI MR Zbl
-
O. Cornea, G. Lupton, J. Oprea, and D. Tanré, Lusternik–Schnirelmann category, Math. Surveys Monogr. 103, American Mathematical Society, Providence, RI, 2003. DOI MR Zbl
-
D. Duffus and I. Rival, Crowns in dismantlable partially ordered sets, in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, Colloq. Math. Soc. János Bolyai 18, North-Holland, Amsterdam-New York, 1978, pp. 271–292. MR Zbl
-
T. Eiter and G. Gottlob, Hypergraph transversal computation and related problems in logic and AI, in Logics in artificial intelligence, Lecture Notes in Comput. Sci. 2424, Springer, Berlin, 2002, pp. 549–564. DOI MR Zbl
-
T. Eiter, K. Makino, and G. Gottlob, Computational aspects of monotone dualization: A brief survey, Discrete Appl. Math. 156 no. 11 (2008), 2035–2049. DOI MR Zbl
-
D. Fernández-Ternero, E. Macías-Virgós, and J. A. Vilches, Lusternik–Schnirelmann category of simplicial complexes and finite spaces, Topology Appl. 194 (2015), 37–50. DOI MR Zbl
-
W. Fischl, G. Gottlob, and R. Pichler, General and fractional hypertree decompositions: Hard and easy cases, in Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2018, pp. 17–32. DOI
-
M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive normal forms, J. Algorithms 21 no. 3 (1996), 618–628. DOI MR Zbl
-
Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin. 4 no. 2 (1988), 115–206. DOI MR Zbl
-
M. R. Garey and D. S. Johnson, Computers and intractability, W. H. Freeman, San Francisco, CA, 1979. MR Zbl
-
J. González, Simplicial complexity: Piecewise linear motion planning in robotics, New York J. Math. 24 (2018), 279–292.
Available at https://nyjm.albany.edu/j/2018/24-16.html.
MR
Zbl
-
D. Gries, A. J. Martin, J. L. A. van de Snepscheut, and J. T. Udding, An algorithm for transitive reduction of an acyclic graph, Sci. Comput. Programming 12 no. 2 (1989), 151–155. DOI MR Zbl
-
M. J. Kukieła, On homotopy types of Alexandroff spaces, Order 27 no. 1 (2010), 9–21. DOI MR Zbl
-
E. L. Lawler, Covering problems: Duality relations and a new method of solution, SIAM J. Appl. Math. 14 (1966), 1115–1132. DOI MR Zbl
-
J. P. May, Finite spaces and larger contexts. Available at https://math.uchicago.edu/%7Emay/FINITE/FINITEBOOK/FINITEBOOKCollatedDraft.pdf.
-
M. C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465–474. DOI MR Zbl
-
M. Meng, J. Feng, and X. Li, A matrix method to hypergraph transversal and covering problems with application in simplifying Boolean functions, in 2016 35th Chinese Control Conference (CCC), Chengdu, China, 2016, pp. 2772–2777. DOI
-
G. Raptis, Homotopy theory of posets, Homology Homotopy Appl. 12 no. 2 (2010), 211–230. DOI MR Zbl
-
I. Rival, A fixed point theorem for finite partially ordered sets, J. Combinatorial Theory Ser. A 21 no. 3 (1976), 309–318. DOI MR Zbl
-
R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325–340. DOI MR Zbl
-
K. Tanaka, Lusternik–Schnirelmann category for cell complexes and posets, Illinois J. Math. 59 no. 3 (2015), 623–636. DOI MR Zbl
-
K. Tanaka, Lusternik–Schnirelmann category of relation matrices on finite spaces and simplicial complexes, Fund. Math. 249 no. 2 (2020), 149–167. DOI MR Zbl
|