Revista de la
Unión Matemática Argentina
Affinity kernels on measure spaces and maximal operators
Hugo Aimar, Ivana Gómez, and Luis Nowak
Volume 63, no. 2 (2022), pp. 489–503    

https://doi.org/10.33044/revuma.2518

Download PDF

Abstract

In this note we consider maximal operators defined in terms of families of kernels and families of their level sets. We prove a general estimate that extends some classical Euclidean cases and, under some mild transitivity property, we show their basic boundedness properties on Lebesgue spaces. The motivation of these problems has its roots in the analysis associated to affinity kernels on large data sets.

References

  1. H. Aimar, Elliptic and parabolic BMO and Harnack's inequality, Trans. Amer. Math. Soc. 306 (1988), no. 1, 265–276. MR 0927690.
  2. H. Aimar and I. Gómez, Affinity and distance. On the Newtonian structure of some data kernels, Anal. Geom. Metr. Spaces 6 (2018), no. 1, 89–95. MR 3816950.
  3. H. Aimar and R. A. Macías, Weighted norm inequalities for the Hardy–Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 (1984), no. 2, 213–216. MR 0740173.
  4. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 0358205.
  5. M. de Guzmán, Real Variable Methods in Fourier Analysis, Notas de Matemática, 75, North-Holland Mathematics Studies, 46, North-Holland, Amsterdam-New York, 1981. MR 0596037.
  6. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), no. 1, 217–234. https://doi.org/10.4064/fm-25-1-217-234.
  7. R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 0546295.
  8. O. Nikodym, Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles, Fund. Math. 10 (1927), no. 1, 116–168. https://doi.org/10.4064/fm-10-1-116-168.
  9. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, NJ, 1970. MR 0290095.