Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The cortex of a class of semidirect product exponential Lie groups
Béchir Dali and Chaïma Sayari
Volume 65, no. 2
(2023),
pp. 313–329
Published online: November 21, 2023
https://doi.org/10.33044/revuma.2793
Download PDF
Abstract
In the present paper, we are concerned with the determination of the cortex of semidirect
product exponential Lie groups. More precisely, we consider a finite dimensional real
vector space $V$ and some abelian matrix group $H=\exp\big(\sum_{i=1}^{n}\mathbb{R}
A_i\bigr)$, where $\{A_1,\dots, A_n\}$ is a set of pairwise commuting non-singular
matrices acting on $V$. We first investigate the cortex of the action of the group $H$ on
$V$. As an application, we investigate the cortex of the group semidirect product
$G:=V\rtimes\mathbb{R}^n$.
References
-
D. Arnal and B. Currey, Representations of Solvable Lie Groups, New Mathematical Monographs 39, Cambridge University Press, Cambridge, 2020. DOI MR Zbl
-
D. Arnal, B. Currey, and V. Oussa, Characterization of regularity for a connected Abelian action, Monatsh. Math. 180 no. 1 (2016), 1–37. DOI MR Zbl
-
D. Arnal, B. Dali, B. Currey, and V. Oussa, Regularity of abelian linear actions, in Commutative and Noncommutative Harmonic Analysis and Applications, Contemp. Math. 603, Amer. Math. Soc., Providence, RI, 2013, pp. 89–109. DOI MR Zbl
-
A. Baklouti, On the cortex of connected simply connected nilpotent Lie groups, Russian J. Math. Phys. 5 no. 3 (1997), 281–294. MR Zbl
-
M. E. B. Bekka and E. Kaniuth, Irreducible representations of locally compact groups that cannot be Hausdorff separated from the identity representation, J. Reine Angew. Math. 385 (1988), 203–220. DOI MR Zbl
-
P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, and M. Vergne, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, No. 4, Dunod, Paris, 1972. MR Zbl
-
J. Boidol, J. Ludwig, and D. Müller, On infinitely small orbits, Studia Math. 88 no. 1 (1988), 1–11. DOI MR Zbl
-
J. Bruna, J. Cufí, H. Führ, and M. Miró, Characterizing abelian admissible groups, J. Geom. Anal. 25 no. 2 (2015), 1045–1074. DOI MR Zbl
-
B. Currey, H. Führ, and K. Taylor, Integrable wavelet transforms with abelian dilation groups, J. Lie Theory 26 no. 2 (2016), 567–595. MR Zbl
-
B. Dali, On the cortex of a class of exponential Lie algebras, J. Lie Theory 22 no. 3 (2012), 845–867. MR Zbl Available at https://www.heldermann.de/JLT/JLT22/JLT223/jlt22037.htm.
-
B. Dali, Note on the cortex of some exponential Lie groups, New York J. Math. 21 (2015), 1247–1261. MR Zbl Available at http://nyjm.albany.edu:8000/j/2015/21_1247.html.
-
B. Dali, Infinitely small orbits in two-step nilpotent Lie algebras, J. Algebra 461 (2016), 351–374. DOI MR Zbl
-
B. Dali and C. Sayari, The cortex of nilpotent Lie algebras of dimensions less or equal to 7 and semi-direct product of vector groups: nilpotent case, J. Lie Theory 32 no. 3 (2022), 643–670. MR Zbl Available at https://www.heldermann.de/JLT/JLT32/JLT323/jlt32029.htm.
-
J. M. G. Fell, Weak containment and induced representations of groups, Canadian J. Math. 14 (1962), 237–268. DOI MR Zbl
-
H. Leptin and J. Ludwig, Unitary Representation Theory of Exponential Lie Groups, De Gruyter Expositions in Mathematics 18, Walter de Gruyter, Berlin, 1994. DOI MR Zbl
-
J. H. Rawnsley, Representations of a semi-direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 no. 2 (1975), 345–350. DOI MR Zbl
-
A. M. Vershik and S. I. Karpushev, Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions, Math. USSR, Sb. 47 (1984), 513–526. DOI MR Zbl
|