Revista de la
Unión Matemática Argentina
The cortex of a class of semidirect product exponential Lie groups
Béchir Dali and Chaïma Sayari

Volume 65, no. 2 (2023), pp. 313–329    

Published online: November 21, 2023

https://doi.org/10.33044/revuma.2793

Download PDF

Abstract

In the present paper, we are concerned with the determination of the cortex of semidirect product exponential Lie groups. More precisely, we consider a finite dimensional real vector space $V$ and some abelian matrix group $H=\exp\big(\sum_{i=1}^{n}\mathbb{R} A_i\bigr)$, where $\{A_1,\dots, A_n\}$ is a set of pairwise commuting non-singular matrices acting on $V$. We first investigate the cortex of the action of the group $H$ on $V$. As an application, we investigate the cortex of the group semidirect product $G:=V\rtimes\mathbb{R}^n$.

References

  1. D. Arnal and B. Currey, Representations of Solvable Lie Groups, New Mathematical Monographs 39, Cambridge University Press, Cambridge, 2020.  DOI  MR  Zbl
  2. D. Arnal, B. Currey, and V. Oussa, Characterization of regularity for a connected Abelian action, Monatsh. Math. 180 no. 1 (2016), 1–37.  DOI  MR  Zbl
  3. D. Arnal, B. Dali, B. Currey, and V. Oussa, Regularity of abelian linear actions, in Commutative and Noncommutative Harmonic Analysis and Applications, Contemp. Math. 603, Amer. Math. Soc., Providence, RI, 2013, pp. 89–109.  DOI  MR  Zbl
  4. A. Baklouti, On the cortex of connected simply connected nilpotent Lie groups, Russian J. Math. Phys. 5 no. 3 (1997), 281–294.  MR  Zbl
  5. M. E. B. Bekka and E. Kaniuth, Irreducible representations of locally compact groups that cannot be Hausdorff separated from the identity representation, J. Reine Angew. Math. 385 (1988), 203–220.  DOI  MR  Zbl
  6. P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, and M. Vergne, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, No. 4, Dunod, Paris, 1972.  MR  Zbl
  7. J. Boidol, J. Ludwig, and D. Müller, On infinitely small orbits, Studia Math. 88 no. 1 (1988), 1–11.  DOI  MR  Zbl
  8. J. Bruna, J. Cufí, H. Führ, and M. Miró, Characterizing abelian admissible groups, J. Geom. Anal. 25 no. 2 (2015), 1045–1074.  DOI  MR  Zbl
  9. B. Currey, H. Führ, and K. Taylor, Integrable wavelet transforms with abelian dilation groups, J. Lie Theory 26 no. 2 (2016), 567–595.  MR  Zbl
  10. B. Dali, On the cortex of a class of exponential Lie algebras, J. Lie Theory 22 no. 3 (2012), 845–867.  MR  Zbl Available at https://www.heldermann.de/JLT/JLT22/JLT223/jlt22037.htm.
  11. B. Dali, Note on the cortex of some exponential Lie groups, New York J. Math. 21 (2015), 1247–1261.  MR  Zbl Available at http://nyjm.albany.edu:8000/j/2015/21_1247.html.
  12. B. Dali, Infinitely small orbits in two-step nilpotent Lie algebras, J. Algebra 461 (2016), 351–374.  DOI  MR  Zbl
  13. B. Dali and C. Sayari, The cortex of nilpotent Lie algebras of dimensions less or equal to 7 and semi-direct product of vector groups: nilpotent case, J. Lie Theory 32 no. 3 (2022), 643–670.  MR  Zbl Available at https://www.heldermann.de/JLT/JLT32/JLT323/jlt32029.htm.
  14. J. M. G. Fell, Weak containment and induced representations of groups, Canadian J. Math. 14 (1962), 237–268.  DOI  MR  Zbl
  15. H. Leptin and J. Ludwig, Unitary Representation Theory of Exponential Lie Groups, De Gruyter Expositions in Mathematics 18, Walter de Gruyter, Berlin, 1994.  DOI  MR  Zbl
  16. J. H. Rawnsley, Representations of a semi-direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 no. 2 (1975), 345–350.  DOI  MR  Zbl
  17. A. M. Vershik and S. I. Karpushev, Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions, Math. USSR, Sb. 47 (1984), 513–526.  DOI  MR  Zbl