Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Boundedness of fractional operators
associated with Schrödinger operators on weighted variable Lebesgue spaces
via extrapolation
Rocío Ayala and Adrian Cabral
Volume 66, no. 1
(2023),
pp. 35–67
https://doi.org/10.33044/revuma.4347
Download PDF
Abstract
In this work we obtain boundedness results for fractional operators associated
with Schrödinger operators $\mathcal{L}=-\Delta+V$ on weighted variable
Lebesgue spaces. These operators include fractional integrals and their
respective commutators. In particular, we obtain weighted inequalities of
the type $L^{p(\cdot)}$-$L^{q(\cdot)}$ and estimates of the type $L^{p(\cdot)}$-Lipschitz
variable integral spaces. For this purpose, we developed extrapolation
results that allow us to obtain boundedness results of the type described
above in the variable setting by starting from analogous inequalities in
the classical context. Such extrapolation results generalize what was done by
Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3
(1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential
Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is,
$V\equiv0$ and $p(\cdot)$ constant, respectively.
References
-
B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232. DOI MR Zbl
-
B. Bongioanni, A. Cabral, and E. Harboure, Lerner's inequality associated to a critical radius function and applications, J. Math. Anal. Appl. 407 no. 1 (2013), 35–55. DOI MR Zbl
-
B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579. DOI MR Zbl
-
B. Bongioanni, E. Harboure, and O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl. 17 no. 1 (2011), 115–134. DOI MR Zbl
-
B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals: weighted estimates for $p=1$, Math. Nachr. 289 no. 11-12 (2016), 1341–1369. DOI MR Zbl
-
A. Cabral, Weighted norm inequalities for the maximal functions associated to a critical radius function on variable Lebesgue spaces, J. Math. Anal. Appl. 516 no. 2 (2022), Paper No. 126521, 15 pp. DOI MR Zbl
-
A. Cabral, G. Pradolini, and W. Ramos, Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context, J. Math. Anal. Appl. 436 no. 1 (2016), 620–636. DOI MR Zbl
-
E. A. Cabral, Análisis en el Semigrupo Generado por el Operador de Schrödinger, Ph.D. thesis, Universidad Nacional del Litoral, 2014. Available at http://hdl.handle.net/11185/613.
-
A. P. Calderón and R. Scott, Sobolev type inequalities for $p>0$, Studia Math. 62 no. 1 (1978), 75–92. DOI MR Zbl
-
D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 no. 1 (2006), 239–264. MR Zbl Available at https://eudml.org/doc/126704.
-
D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from $A_\infty$ weights and applications, J. Funct. Anal. 213 no. 2 (2004), 412–439. DOI MR Zbl
-
D. Cruz-Uribe and L.-A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 no. 2 (2017), 1205–1235. DOI MR Zbl
-
D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. DOI MR Zbl
-
D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer Basel AG, Basel, 2011. DOI MR Zbl
-
L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl. 7 no. 2 (2004), 245–253. DOI MR Zbl
-
L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, 2011. DOI MR Zbl
-
J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 no. 2 (2005), 329–356. DOI MR Zbl
-
J. Dziubański and J. Zienkiewicz, $H^p$ spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math. 98 no. 1 (2003), 5–38. DOI MR Zbl
-
J. L. Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.) 7 no. 2 (1982), 393–395. DOI MR Zbl
-
E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397. DOI MR Zbl
-
O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) no. 4 (1991), 592–618. MR Zbl
-
K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc. (2) 62 no. 3 (2000), 885–903. DOI MR Zbl
-
L. Melchiori and G. Pradolini, Potential operators and their commutators acting between variable Lebesgue spaces with different weights, Integral Transforms Spec. Funct. 29 no. 11 (2018), 909–926. DOI MR Zbl
-
J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983. DOI MR Zbl
-
G. Pradolini, W. Ramos, and J. Recchi, On the optimal numerical parameters related with two weighted estimates for commutators of classical operators and extrapolation results, Collect. Math. 72 no. 1 (2021), 229–259. DOI MR Zbl
-
Z. W. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 no. 2 (1995), 513–546. MR Zbl Available at http://www.numdam.org/item?id=AIF_1995__45_2_513_0.
-
L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math. 27 no. 4 (2015), 2491–2532. DOI MR Zbl
|