Revista de la
Unión Matemática Argentina
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
Rocío Ayala and Adrian Cabral
Volume 66, no. 1 (2023), pp. 35–67    

https://doi.org/10.33044/revuma.4347

Download PDF

Abstract

In this work we obtain boundedness results for fractional operators associated with Schrödinger operators $\mathcal{L}=-\Delta+V$ on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type $L^{p(\cdot)}$-$L^{q(\cdot)}$ and estimates of the type $L^{p(\cdot)}$-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, $V\equiv0$ and $p(\cdot)$ constant, respectively.

References

  1. B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232.  DOI  MR  Zbl
  2. B. Bongioanni, A. Cabral, and E. Harboure, Lerner's inequality associated to a critical radius function and applications, J. Math. Anal. Appl. 407 no. 1 (2013), 35–55.  DOI  MR  Zbl
  3. B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579.  DOI  MR  Zbl
  4. B. Bongioanni, E. Harboure, and O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl. 17 no. 1 (2011), 115–134.  DOI  MR  Zbl
  5. B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals: weighted estimates for $p=1$, Math. Nachr. 289 no. 11-12 (2016), 1341–1369.  DOI  MR  Zbl
  6. A. Cabral, Weighted norm inequalities for the maximal functions associated to a critical radius function on variable Lebesgue spaces, J. Math. Anal. Appl. 516 no. 2 (2022), Paper No. 126521, 15 pp.  DOI  MR  Zbl
  7. A. Cabral, G. Pradolini, and W. Ramos, Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context, J. Math. Anal. Appl. 436 no. 1 (2016), 620–636.  DOI  MR  Zbl
  8. E. A. Cabral, Análisis en el Semigrupo Generado por el Operador de Schrödinger, Ph.D. thesis, Universidad Nacional del Litoral, 2014. Available at http://hdl.handle.net/11185/613.
  9. A. P. Calderón and R. Scott, Sobolev type inequalities for $p>0$, Studia Math. 62 no. 1 (1978), 75–92.  DOI  MR  Zbl
  10. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 no. 1 (2006), 239–264.  MR  Zbl Available at https://eudml.org/doc/126704.
  11. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from $A_\infty$ weights and applications, J. Funct. Anal. 213 no. 2 (2004), 412–439.  DOI  MR  Zbl
  12. D. Cruz-Uribe and L.-A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 no. 2 (2017), 1205–1235.  DOI  MR  Zbl
  13. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013.  DOI  MR  Zbl
  14. D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer Basel AG, Basel, 2011.  DOI  MR  Zbl
  15. L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl. 7 no. 2 (2004), 245–253.  DOI  MR  Zbl
  16. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, 2011.  DOI  MR  Zbl
  17. J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 no. 2 (2005), 329–356.  DOI  MR  Zbl
  18. J. Dziubański and J. Zienkiewicz, $H^p$ spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math. 98 no. 1 (2003), 5–38.  DOI  MR  Zbl
  19. J. L. Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.) 7 no. 2 (1982), 393–395.  DOI  MR  Zbl
  20. E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397.  DOI  MR  Zbl
  21. O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) no. 4 (1991), 592–618.  MR  Zbl
  22. K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc. (2) 62 no. 3 (2000), 885–903.  DOI  MR  Zbl
  23. L. Melchiori and G. Pradolini, Potential operators and their commutators acting between variable Lebesgue spaces with different weights, Integral Transforms Spec. Funct. 29 no. 11 (2018), 909–926.  DOI  MR  Zbl
  24. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.  DOI  MR  Zbl
  25. G. Pradolini, W. Ramos, and J. Recchi, On the optimal numerical parameters related with two weighted estimates for commutators of classical operators and extrapolation results, Collect. Math. 72 no. 1 (2021), 229–259.  DOI  MR  Zbl
  26. Z. W. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 no. 2 (1995), 513–546.  MR  Zbl Available at http://www.numdam.org/item?id=AIF_1995__45_2_513_0.
  27. L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math. 27 no. 4 (2015), 2491–2532.  DOI  MR  Zbl