Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Two-weighted estimates of
the multilinear fractional integral operator between weighted Lebesgue
and Lipschitz spaces with optimal parameters
Fabio Berra, Gladis Pradolini, and Wilfredo Ramos
Volume 66, no. 1
(2023),
pp. 69–90
https://doi.org/10.33044/revuma.4346
Download PDF
Abstract
Given an $m$-tuple of weights $\vec{v}=(v_1,\dots,v_m)$, we characterize the
classes of pairs $(w,\vec{v})$ involved in the boundedness properties of
the multilinear fractional integral operator from
$\prod_{i=1}^mL^{p_i}\left(v_i^{p_i}\right)$ into suitable Lipschitz spaces
associated to a parameter $\delta$, $\mathcal{L}_w(\delta)$. Our results
generalize some previous estimates not only for the linear case but also
for the unweighted problem in the multilinear context. We emphasize the
study related to the range of the parameters involved in the problem
described above, which is optimal in the sense that they become trivial
outside of the region obtained. We also exhibit nontrivial examples of pairs of
weights in this region.
References
-
H. Aimar, S. Hartzstein, B. Iaffei, and B. Viviani, The Riesz potential as a multilinear operator into general $\mathrm{BMO}_\beta$ spaces, J. Math. Sci. (N.Y.) 173 no. 6 (2011), 643–655. DOI MR Zbl
-
F. Berra, G. Pradolini, and W. Ramos, Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces, Positivity 27 no. 2 (2023), Paper No. 22, 35 pp. DOI MR Zbl
-
L. Grafakos, On multilinear fractional integrals, Studia Math. 102 no. 1 (1992), 49–56. DOI MR Zbl
-
L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpolation, Math. Ann. 319 no. 1 (2001), 151–180. DOI MR Zbl
-
E. Harboure, O. Salinas, and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 no. 1 (1997), 235–255. DOI MR Zbl
-
C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 no. 1 (1999), 1–15. DOI MR Zbl
-
K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 no. 2 (2009), 213–238. DOI MR Zbl
-
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
-
B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. DOI MR Zbl
-
B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 no. 3 (1975/76), 221–237. DOI MR Zbl
-
G. Pradolini, A class of pairs of weights related to the boundedness of the fractional integral operator between $L^p$ and Lipschitz spaces, Comment. Math. Univ. Carolin. 42 no. 1 (2001), 133–152. MR Zbl Available at https://eudml.org/doc/248807.
-
G. Pradolini, Two-weighted norm inequalities for the fractional integral operator between $L^p$ and Lipschitz spaces, Comment. Math. (Prace Mat.) 41 (2001), 147–169. MR Zbl
-
G. Pradolini, Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators, J. Math. Anal. Appl. 367 no. 2 (2010), 640–656. DOI MR Zbl
-
G. Pradolini and J. Recchi, On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols, Czechoslovak Math. J. 73 no. 3 (2023), 733–754. DOI MR Zbl
|