Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Learning the model from the data
Carlos Cabrelli and Ursula Molter
Volume 66, no. 1
(2023),
pp. 141–152
https://doi.org/10.33044/revuma.4371
Download PDF
Abstract
The task of approximating data with a concise model comprising only a few
parameters is a key concern in many applications, particularly in signal
processing. These models, typically subspaces belonging to a specific
class, are carefully chosen based on the data at hand. In this survey, we
review the latest research on data approximation using models with few
parameters, with a specific emphasis on scenarios where the data is
situated in finite-dimensional vector spaces, functional spaces such as
$L^2(\mathbb{R}^d)$, and other general situations. We highlight the invariant
properties of these subspace-based models that make them suitable for
diverse applications, particularly in the field of image processing.
References
-
A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their Parseval frame generators, Appl. Comput. Harmon. Anal. 23 no. 2 (2007), 273–283. DOI MR Zbl
-
A. Aldroubi, C. Cabrelli, C. Heil, K. Kornelson, and U. Molter, Invariance of a shift-invariant space, J. Fourier Anal. Appl. 16 no. 1 (2010), 60–75. DOI MR Zbl
-
M. Anastasio, C. Cabrelli, and V. Paternostro, Invariance of a shift-invariant space in several variables, Complex Anal. Oper. Theory 5 no. 4 (2011), 1031–1050. DOI MR Zbl
-
D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Optimal translational-rotational invariant dictionaries for images, in Proc. SPIE 11138, Wavelets and Sparsity XVIII, 2019. DOI
-
D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Approximation by group invariant subspaces, J. Math. Pures Appl. (9) 142 (2020), 76–100. DOI MR Zbl
-
D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Data approximation with time-frequency invariant systems, in Landscapes of Time-Frequency Analysis—ATFA 2019, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2020, pp. 29–42. DOI MR Zbl
-
L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Erste Abh.), Math. Ann. 70 no. 3 (1911), 297–336. DOI MR Zbl
-
L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abh.), Math. Ann. 72 no. 3 (1912), 400–412. DOI MR Zbl
-
C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in $L_2(\mathbf{R}^d)$, J. Funct. Anal. 119 no. 1 (1994), 37–78. DOI MR Zbl
-
C. Cabrelli and C. A. Mosquera, Subspaces with extra invariance nearest to observed data, Appl. Comput. Harmon. Anal. 41 no. 2 (2016), 660–676. DOI MR Zbl
-
C. Cabrelli, C. A. Mosquera, and V. Paternostro, An approximation problem in multiplicatively invariant spaces, in Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, Contemp. Math. 693, Amer. Math. Soc., Providence, RI, 2017, pp. 143–165. DOI MR Zbl
-
C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), 211–218. DOI Zbl
-
D. R. Farkas, Crystallographic groups and their mathematics, Rocky Mountain J. Math. 11 no. 4 (1981), 511–551. DOI MR Zbl
-
B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. MR Zbl
-
H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964. MR Zbl
-
J. S. Lomont, Applications of Finite Groups, Dover, New York, 1993. MR Zbl
-
G. E. Martin, Transformation Geometry: An Introduction to Symmetry, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. MR Zbl
-
E. Schmidt, Zur Theorie der linearen und nicht linearen Integralgleichungen. Zweite Abhandlung: Auflösung der allgemeinen linearen Integralgleichung, Math. Ann. 64 no. 2 (1907), 161–174. DOI MR Zbl
-
R. Tessera and H. Wang, Uncertainty principles in finitely generated shift-invariant spaces with additional invariance, J. Math. Anal. Appl. 410 no. 1 (2014), 134–143. DOI MR Zbl
-
J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967. MR Zbl
-
H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 no. 1 (1938), 289–312. DOI MR Zbl
|