Revista de la
Unión Matemática Argentina
Learning the model from the data
Carlos Cabrelli and Ursula Molter
Volume 66, no. 1 (2023), pp. 141–152    

https://doi.org/10.33044/revuma.4371

Download PDF

Abstract

The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as $L^2(\mathbb{R}^d)$, and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.

References

  1. A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their Parseval frame generators, Appl. Comput. Harmon. Anal. 23 no. 2 (2007), 273–283.  DOI  MR  Zbl
  2. A. Aldroubi, C. Cabrelli, C. Heil, K. Kornelson, and U. Molter, Invariance of a shift-invariant space, J. Fourier Anal. Appl. 16 no. 1 (2010), 60–75.  DOI  MR  Zbl
  3. M. Anastasio, C. Cabrelli, and V. Paternostro, Invariance of a shift-invariant space in several variables, Complex Anal. Oper. Theory 5 no. 4 (2011), 1031–1050.  DOI  MR  Zbl
  4. D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Optimal translational-rotational invariant dictionaries for images, in Proc. SPIE 11138, Wavelets and Sparsity XVIII, 2019.  DOI
  5. D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Approximation by group invariant subspaces, J. Math. Pures Appl. (9) 142 (2020), 76–100.  DOI  MR  Zbl
  6. D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Data approximation with time-frequency invariant systems, in Landscapes of Time-Frequency Analysis—ATFA 2019, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2020, pp. 29–42.  DOI  MR  Zbl
  7. L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Erste Abh.), Math. Ann. 70 no. 3 (1911), 297–336.  DOI  MR  Zbl
  8. L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abh.), Math. Ann. 72 no. 3 (1912), 400–412.  DOI  MR  Zbl
  9. C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in $L_2(\mathbf{R}^d)$, J. Funct. Anal. 119 no. 1 (1994), 37–78.  DOI  MR  Zbl
  10. C. Cabrelli and C. A. Mosquera, Subspaces with extra invariance nearest to observed data, Appl. Comput. Harmon. Anal. 41 no. 2 (2016), 660–676.  DOI  MR  Zbl
  11. C. Cabrelli, C. A. Mosquera, and V. Paternostro, An approximation problem in multiplicatively invariant spaces, in Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, Contemp. Math. 693, Amer. Math. Soc., Providence, RI, 2017, pp. 143–165.  DOI  MR  Zbl
  12. C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), 211–218.  DOI  Zbl
  13. D. R. Farkas, Crystallographic groups and their mathematics, Rocky Mountain J. Math. 11 no. 4 (1981), 511–551.  DOI  MR  Zbl
  14. B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.  MR  Zbl
  15. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.  MR  Zbl
  16. J. S. Lomont, Applications of Finite Groups, Dover, New York, 1993.  MR  Zbl
  17. G. E. Martin, Transformation Geometry: An Introduction to Symmetry, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.  MR  Zbl
  18. E. Schmidt, Zur Theorie der linearen und nicht linearen Integralgleichungen. Zweite Abhandlung: Auflösung der allgemeinen linearen Integralgleichung, Math. Ann. 64 no. 2 (1907), 161–174.  DOI  MR  Zbl
  19. R. Tessera and H. Wang, Uncertainty principles in finitely generated shift-invariant spaces with additional invariance, J. Math. Anal. Appl. 410 no. 1 (2014), 134–143.  DOI  MR  Zbl
  20. J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.  MR  Zbl
  21. H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 no. 1 (1938), 289–312.  DOI  MR  Zbl