Characterizations of local $A_{\infty}$ weights and applications to local singular integrals
Federico Campos, Oscar Salinas, and Beatriz Viviani
Volume 66, no. 1
(2023),
pp. 153–175
https://doi.org/10.33044/revuma.4355
Download PDF
Abstract
In a general geometric setting, we prove different characterizations of a local
version of Muckenhoupt $A_{\infty}$ weights. As an application, we obtain
conclusions about the relationship between this class and the one-weight
boundedness of local singular integrals from $L^{\infty}$ to BMO.
References
-
H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 no. 1 (1985), 135–153. DOI MR Zbl
-
H. Aimar and R. A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 no. 2 (1984), 213–216. DOI MR Zbl
-
R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. DOI MR Zbl
-
N. Fujii, Weighted bounded mean oscillation and singular integrals, Math. Japon. 22 no. 5 (1977/78), 529–534. MR Zbl
-
E. Harboure, O. Salinas, and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 no. 1 (1997), 235–255. DOI MR Zbl
-
E. Harboure, O. Salinas, and B. Viviani, Local maximal function and weights in a general setting, Math. Ann. 358 no. 3-4 (2014), 609–628. DOI MR Zbl
-
E. Harboure, O. Salinas, and B. Viviani, Local fractional and singular integrals on open subsets, J. Anal. Math. 138 no. 1 (2019), 301–324. DOI MR Zbl
-
T. Hytönen, C. Pérez, and E. Rela, Sharp reverse Hölder property for $A_\infty$ weights on spaces of homogeneous type, J. Funct. Anal. 263 no. 12 (2012), 3883–3899. DOI MR Zbl
-
R. A. Macías and C. Segovia, A well behaved quasi-distance on spaces of homogeneous type, Trab. Mat. Inst. Argentino Mat. 32 (1981), 1–18.
-
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
-
A. Nowak and K. Stempak, Weighted estimates for the Hankel transform transplantation operator, Tohoku Math. J. (2) 58 no. 2 (2006), 277–301. DOI MR Zbl