Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Pointwise convergence of fractional powers of Hermite type operators
Guillermo Flores, Gustavo Garrigós, Teresa Signes, and Beatriz Viviani
Volume 66, no. 1
(2023),
pp. 187–205
https://doi.org/10.33044/revuma.4357
Download PDF
Abstract
When $L$ is the Hermite or the Ornstein–Uhlenbeck operator, we find minimal
integrability and smoothness conditions on a function $f$ so that the
fractional power $L^\sigma f(x_0)$ is well-defined at a given point $x_0$. We
illustrate the optimality of the conditions with various examples. Finally, we
obtain similar results for the fractional operators $(-\Delta+R)^\sigma$, with
$R > 0$.
References
-
I. Abu-Falahah and J. L. Torrea, Hermite function expansions versus Hermite polynomial expansions, Glasg. Math. J. 48 no. 2 (2006), 203–215. DOI MR Zbl
-
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 no. 8 (2007), 1245–1260. DOI MR Zbl
-
I. Cardoso, On the pointwise convergence to initial data of heat and Poisson problems for the Bessel operator, J. Evol. Equ. 17 no. 3 (2017), 953–977. DOI MR Zbl
-
G. Flores, G. Garrigós, T. Signes, and B. Viviani, Pointwise convergence of fractional powers of Laguerre and Bessel operators, Work in progress.
-
G. Flores and B. Viviani, A Calderón theorem for the Poisson semigroups associated with the Ornstein-Uhlenbeck and Hermite operators, Math. Ann. 386 no. 1-2 (2023), 329–342. DOI MR Zbl
-
G. Garrigós, A weak 2-weight problem for the Poisson-Hermite semigroup, in Advanced Courses of Mathematical Analysis VI (Málaga, 2014), World Scientific, Hackensack, NJ, 2017, pp. 153–171. MR Zbl
-
G. Garrigós, S. Hartzstein, T. Signes, and B. Viviani, A.e. convergence and 2-weight inequalities for Poisson-Laguerre semigroups, Ann. Mat. Pura Appl. (4) 196 no. 5 (2017), 1927–1960. DOI MR Zbl
-
G. Garrigós, S. Hartzstein, T. Signes, J. L. Torrea, and B. Viviani, Pointwise convergence to initial data of heat and Laplace equations, Trans. Amer. Math. Soc. 368 no. 9 (2016), 6575–6600. DOI MR Zbl
-
M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 no. 1 (2017), 7–51. DOI MR Zbl
-
N. N. Lebedev, Special Functions and Their Applications, Prentice-Hall, Englewood Cliffs, NJ, 1965. MR Zbl
-
E. H. Lieb and M. Loss, Analysis, second ed., Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001. DOI MR Zbl
-
L. Roncal and P. R. Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math. 18 no. 3 (2016), 1550033, 26 pp. DOI MR Zbl
-
W. Rudin, Functional Analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991. MR Zbl
-
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 no. 11 (2010), 2092–2122. DOI MR Zbl
-
P. R. Stinga and J. L. Torrea, Regularity theory for the fractional harmonic oscillator, J. Funct. Anal. 260 no. 10 (2011), 3097–3131. DOI MR Zbl
-
S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993. MR Zbl
-
K. Yosida, Functional Analysis, sixth ed., Grundlehren der Mathematischen Wissenschaften 123, Springer-Verlag, Berlin-New York, 1980. MR Zbl
|