Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On fractional operators with more than one singularity
María Silvina Riveros and Raúl E. Vidal
Volume 66, no. 1
(2023),
pp. 281–295
https://doi.org/10.33044/revuma.4364
Download PDF
Abstract
Let $0\leq \alpha < n$, $m\in \mathbb{N}$ and let $T_{\alpha,m}$ be an integral
operator given by a kernel of the form \[K(x,y)=k_1(x-A_1y)k_2(x-A_2y)\dots
k_m(x-A_my),\] where $A_i$ are invertible matrices and each $k_i$ satisfies
a fractional size and a generalized fractional Hörmander condition that
depends on $\alpha$. In this survey, written in honour to Eleonor Harboure,
we collect several results about boundedness in different spaces of the
operator $T_{\alpha,m}$, obtained along the last 35 years by several
members of the Analysis Group of FAMAF, UNC.
References
-
N. Accomazzo, J. C. Martínez-Perales, and I. P. Rivera-Ríos, On Bloom-type estimates for iterated commutators of fractional integrals, Indiana Univ. Math. J. 69 no. 4 (2020), 1207–1230. DOI MR Zbl
-
E. I. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces, Proc. Amer. Math. Soc. 127 no. 1 (1999), 79–87. DOI MR Zbl
-
A. L. Bernardis, M. Lorente, and M. S. Riveros, Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions, Math. Inequal. Appl. 14 no. 4 (2011), 881–895. DOI MR Zbl
-
C. Capone, D. Cruz-Uribe, and A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L^p$ spaces, Rev. Mat. Iberoam. 23 no. 3 (2007), 743–770. DOI MR Zbl
-
D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 28 no. 1 (2003), 223–238. MR Zbl
-
D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. DOI MR Zbl
-
L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, 2011. DOI MR Zbl
-
E. V. Ferreyra and G. J. Flores, Weighted estimates for integral operators on local $BMO$ type spaces, Math. Nachr. 288 no. 8-9 (2015), 905–916. DOI MR Zbl
-
G. Ibañez Firnkorn and L. A. Vallejos, Boundedness of commutators of integral operators of fractional type and $M_{\alpha, L^r\log L}$ maximal operator in variable Lebesgue spaces, J. Geom. Anal. 33 no. 11 (2023), Article no. 354, 16 pp. DOI MR
-
G. H. Ibañez Firnkorn and M. S. Riveros, Certain fractional type operators with Hörmander conditions, Ann. Acad. Sci. Fenn. Math. 43 no. 2 (2018), 913–929. MR Zbl
-
G. H. Ibañez Firnkorn and M. S. Riveros, Commutators of certain fractional type operators with Hörmander conditions, one-weighted and two-weighted inequalities, Math. Inequal. Appl. 23 no. 4 (2020), 1361–1389. DOI MR Zbl
-
G. H. Ibañez Firnkorn, M. S. Riveros, and R. E. Vidal, Necessary condition on weights for maximal and integral operators with rough kernels, Studia Math. 263 no. 3 (2022), 293–321. DOI MR Zbl
-
T. Godoy, L. Saal, and M. Urciuolo, About certain singular kernels $K(x,y)=K_1(x-y)K_2(x+y)$, Math. Scand. 74 no. 1 (1994), 98–110. DOI MR Zbl
-
T. Godoy and M. Urciuolo, About the $L^p$-boundedness of some integral operators, Rev. Un. Mat. Argentina 38 no. 3-4 (1993), 192–195. MR Zbl
-
T. Godoy and M. Urciuolo, About the $L^p$-boundedness of integral operators with kernels of the form $K_1(x-y)K_2(x+y)$, Math. Scand. 78 no. 1 (1996), 84–92. DOI MR Zbl
-
T. Godoy and M. Urciuolo, On certain integral operators of fractional type, Acta Math. Hungar. 82 no. 1-2 (1999), 99–105. DOI MR Zbl
-
A. K. Lerner, On some questions related to the maximal operator on variable $L^p$ spaces, Trans. Amer. Math. Soc. 362 no. 8 (2010), 4229–4242. DOI MR Zbl
-
A. K. Lerner, On pointwise estimates involving sparse operators, New York J. Math. 22 (2016), 341–349. MR Zbl Available at https://www.emis.de/journals/NYJM/j/2016/22-15.html.
-
K. Moen, Sharp one-weight and two-weight bounds for maximal operators, Studia Math. 194 no. 2 (2009), 163–180. DOI MR Zbl
-
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
-
B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. DOI MR Zbl
-
A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R})$, Math. Inequal. Appl. 7 no. 2 (2004), 255–265. DOI MR Zbl
-
F. Ricci and P. Sjögren, Two-parameter maximal functions in the Heisenberg group, Math. Z. 199 no. 4 (1988), 565–575. DOI MR Zbl
-
M. S. Riveros and M. Urciuolo, Weighted inequalities for integral operators with some homogeneous kernels, Czechoslovak Math. J. 55 no. 2 (2005), 423–432. DOI MR Zbl
-
M. S. Riveros and M. Urciuolo, Weighted inequalities for fractional type operators with some homogeneous kernels, Acta Math. Sin. (Engl. Ser.) 29 no. 3 (2013), 449–460. DOI MR Zbl
-
M. S. Riveros and M. Urciuolo, Weighted inequalities for some integral operators with rough kernels, Cent. Eur. J. Math. 12 no. 4 (2014), 636–647. DOI MR Zbl
-
P. Rocha and M. Urciuolo, On the $H^p$-$L^q$ boundedness of some fractional integral operators, Czechoslovak Math. J. 62 no. 3 (2012), 625–635. DOI MR Zbl
-
P. Rocha and M. Urciuolo, On the $H^p$-$L^p$-boundedness of some integral operators, Georgian Math. J. 18 no. 4 (2011), 801–808. DOI MR Zbl
-
P. Rocha and M. Urciuolo, About integral operators of fractional type on variable $L^p$ spaces, Georgian Math. J. 20 no. 4 (2013), 805–816. DOI MR Zbl
-
E. T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 no. 1 (1982), 1–11. DOI MR Zbl
-
M. Urciuolo and L. Vallejos, Integral operators with rough kernels in variable Lebesgue spaces, Acta Math. Hungar. 162 no. 1 (2020), 105–116. DOI MR Zbl
-
M. Urciuolo and L. Vallejos, $L^{p(\cdot)}$-$L^{q(\cdot)}$ boundedness of some integral operators obtained by extrapolation techniques, Georgian Math. J. 27 no. 3 (2020), 479–484. DOI MR Zbl
-
M. S. Urciuolo and L. A. Vallejos, A generalization of the boundedness of certain integral operators in variable Lebesgue spaces, J. Math. Inequal. 14 no. 2 (2020), 547–557. DOI MR Zbl
|