Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Distance Laplacian eigenvalues of graphs, and chromatic and independence number
Shariefuddin Pirzada and Saleem Khan
Volume 67, no. 1
(2024),
pp. 145–159
Published online: April 16, 2024
https://doi.org/10.33044/revuma.3235
Download PDF
Abstract
Given an interval $I$, let $m_{D^{L} (G)} I$ (or simply $m_{D^{L}} I$) be the number of
distance Laplacian eigenvalues of a graph $G$ which lie in $I$. For a prescribed interval
$I$, we give the bounds for $m_{D^{L} }I$ in terms of the independence number $\alpha(G)$,
the chromatic number $\chi$, the number of pendant vertices $p$, the number of components
in the complement graph $C_{\overline{G}}$ and the diameter $d$ of $G$. In particular, we
prove that $m_{D^{L}(G) }[n,n+2)\leq \chi-1$, $m_{D^{L}(G)}[n,n+\alpha(G))\leq
n-\alpha(G)$, $m_{D^{L}(G) }[n,n+p)\leq n-p$ and discuss the cases where the bounds are
best possible. In addition, we characterize graphs of diameter $d\leq 2$ which satisfy
$m_{D^{L}(G) } (2n-1,2n )= \alpha(G)-1=\frac{n}{2}-1$. We also propose some problems of
interest.
References
-
M. Ahanjideh, S. Akbari, M. H. Fakharan, and V. Trevisan, Laplacian eigenvalue distribution and graph parameters, Linear Algebra Appl. 632 (2022), 1–14. DOI MR Zbl
-
M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 no. 1 (2013), 21–33. DOI MR Zbl
-
M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math. J. 64(139) no. 3 (2014), 751–761. DOI MR Zbl
-
M. Aouchiche and P. Hansen, Distance Laplacian eigenvalues and chromatic number in graphs, Filomat 31 no. 9 (2017), 2545–2555. DOI MR Zbl
-
D. M. Cardoso, D. P. Jacobs, and V. Trevisan, Laplacian distribution and domination, Graphs Combin. 33 no. 5 (2017), 1283–1295. DOI MR Zbl
-
D. Cvetković, P. Rowlinson, and S. Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts 75, Cambridge: Cambridge University Press, New York, 2010. DOI MR Zbl
-
J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 no. 4 (1985), 287–293. DOI MR Zbl
-
R. Grone, R. Merris, and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 no. 2 (1990), 218–238. DOI MR Zbl
-
J. M. Guo and T. S. Wang, A relation between the matching number and Laplacian spectrum of a graph, Linear Algebra Appl. 325 no. 1-3 (2001), 71–74. DOI MR Zbl
-
S. T. Hedetniemi, D. P. Jacobs, and V. Trevisan, Domination number and Laplacian eigenvalue distribution, European J. Combin. 53 (2016), 66–71. DOI MR Zbl
-
Q. Liu, The Laplacian spectrum of corona of two graphs, Kragujevac J. Math. 38 no. 1 (2014), 163–170. DOI MR
-
M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Dover, New York, 1992. MR
-
R. Merris, The number of eigenvalues greater than two in the Laplacian spectrum of a graph, Portugal. Math. 48 no. 3 (1991), 345–349. MR Zbl Available at http://eudml.org/doc/115760.
-
S. Pirzada, An introduction to graph theory, Universities Press, Hyderabad, India, 2012.
-
S. Pirzada and S. Khan, On distance Laplacian spectral radius and chromatic number of graphs, Linear Algebra Appl. 625 (2021), 44–54. DOI MR Zbl
-
S. Pirzada and S. Khan, On the sum of distance Laplacian eigenvalues of graphs, Tamkang J. Math. 54 no. 1 (2023), 83–91. DOI MR Zbl
|