Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Primitive decompositions of Dolbeault harmonic forms on compact almost-Kähler manifolds
Andrea Cattaneo, Nicoletta Tardini, and Adriano Tomassini
Volume 67, no. 1
(2024),
pp. 301–316
Published online: May 22, 2024
https://doi.org/10.33044/revuma.3557
Download PDF
Abstract
Let $(X,J,g,\omega)$ be a compact $2n$-dimensional almost-Kähler manifold. We prove
primitive decompositions of $\partial$-, $\bar\partial$-harmonic forms on $X$ in bidegree
$(1,1)$ and $(n-1,n-1)$ (such bidegrees appear to be optimal). We provide examples showing
that in bidegree $(1,1)$ the $\partial$- and $\bar\partial$-decompositions differ.
References
-
D. Angella, N. Istrati, A. Otiman, and N. Tardini, Variational problems in conformal geometry, J. Geom. Anal. 31 no. 3 (2021), 3230–3251. DOI MR Zbl
-
P. de Bartolomeis and A. Tomassini, On formality of some symplectic manifolds, Internat. Math. Res. Notices no. 24 (2001), 1287–1314. DOI MR Zbl
-
A. Cattaneo, A. Nannicini, and A. Tomassini, Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection, Ann. Mat. Pura Appl. (4) 199 no. 5 (2020), 1815–1842. DOI MR Zbl
-
A. Cattaneo, A. Nannicini, and A. Tomassini, On Kodaira dimension of almost complex $4$-dimensional solvmanifolds without complex structures, Internat. J. Math. 32 no. 10 (2021), Paper No. 2150075, 41 pp. DOI MR Zbl
-
J. Cirici and S. O. Wilson, Topological and geometric aspects of almost Kähler manifolds via harmonic theory, Selecta Math. (N.S.) 26 no. 3 (2020), Paper No. 35, 27 pp. DOI MR Zbl
-
J. Cirici and S. O. Wilson, Dolbeault cohomology for almost complex manifolds, Adv. Math. 391 (2021), Paper No. 107970, 52 pp. DOI MR Zbl
-
R. Coelho, G. Placini, and J. Stelzig, Maximally non-integrable almost complex structures: an $h$-principle and cohomological properties, Selecta Math. (N.S.) 28 no. 5 (2022), Paper No. 83, 25 pp. DOI MR Zbl
-
P. Gauduchon, La $1$-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 no. 4 (1984), 495–518. DOI MR Zbl
-
F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math. (2) 60 (1954), 213–236. DOI MR Zbl
-
T. Holt, Bott-Chern and $\bar\partial$ harmonic forms on almost Hermitian 4-manifolds, Math. Z. 302 no. 1 (2022), 47–72. DOI MR Zbl
-
T. Holt and W. Zhang, Harmonic forms on the Kodaira-Thurston manifold, Adv. Math. 400 (2022), Paper No. 108277, 30 pp. DOI MR Zbl
-
R. Piovani and N. Tardini, Bott-Chern harmonic forms and primitive decompositions on compact almost Kähler manifolds, Ann. Mat. Pura Appl. (4) 202 no. 6 (2023), 2749–2765. DOI MR Zbl
-
R. Piovani and A. Tomassini, Bott-Chern Laplacian on almost Hermitian manifolds, Math. Z. 301 no. 3 (2022), 2685–2707. DOI MR Zbl
-
N. Tardini and A. Tomassini, Differential operators on almost-Hermitian manifolds and harmonic forms, Complex Manifolds 7 no. 1 (2020), 106–128. DOI MR Zbl
-
N. Tardini and A. Tomassini, Almost-complex invariants of families of six-dimensional solvmanifolds, Complex Manifolds 9 no. 1 (2022), 238–260. DOI MR Zbl
-
N. Tardini and A. Tomassini, $\bar\partial$-harmonic forms on 4-dimensional almost-Hermitian manifolds, Math. Res. Lett. 30 no. 5 (2023), 1617–1637. DOI MR Zbl
-
L.-S. Tseng and S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I, J. Differential Geom. 91 no. 3 (2012), 383–416. MR Zbl Available at http://projecteuclid.org/euclid.jdg/1349292670.
-
A. Weil, Introduction à l'étude des variétés kählériennes, Publications de l'Institut de Mathématique de l'Université de Nancago, VI. Actualités Sci. Ind., no. 1267, Hermann, Paris, 1958. MR Zbl
|