Revista de la
Unión Matemática Argentina
Decidable objects and molecular toposes
Matías Menni

Volume 67, no. 2 (2024), pp. 397–415    

Published online: July 17, 2024

https://doi.org/10.33044/revuma.3427

Download PDF

Abstract

We study several sufficient conditions for the molecularity/local-connectedness of geometric morphisms. In particular, we show that if $\mathcal{S}$ is a Boolean topos, then, for every hyperconnected essential geometric morphism $p : \mathcal{E} \rightarrow \mathcal{S}$ such that the leftmost adjoint $p_{!}$ preserves finite products, $p$ is molecular and $p^* : \mathcal{S} \rightarrow \mathcal{E}$ coincides with the full subcategory of decidable objects in $\mathcal{E}$. We also characterize the reflections between categories with finite limits that induce molecular maps between the respective presheaf toposes. As a corollary we establish the molecularity of certain geometric morphisms between Gaeta toposes.

References

  1. M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Math. 269–270, Springer-Verlag, Berlin-Heidelberg-New York, 1972.  DOI  MR  Zbl
  2. M. Barr and R. Paré, Molecular toposes, J. Pure Appl. Algebra 17 no. 2 (1980), 127–152.  DOI  MR  Zbl
  3. F. Borceux and B. J. Day, On product-preserving Kan extensions, Bull. Austral. Math. Soc. 17 no. 2 (1977), 247–255.  DOI  MR  Zbl
  4. A. Carboni and G. Janelidze, Decidable (= separable) objects and morphisms in lextensive categories, J. Pure Appl. Algebra 110 no. 3 (1996), 219–240.  DOI  MR  Zbl
  5. A. Carboni, G. Janelidze, G. M. Kelly, and R. Paré, On localization and stabilization for factorization systems, Appl. Categ. Structures 5 no. 1 (1997), 1–58.  DOI  MR  Zbl
  6. A. Carboni and S. Mantovani, An elementary characterization of categories of separated objects, J. Pure Appl. Algebra 89 no. 1-2 (1993), 63–92.  DOI  MR  Zbl
  7. M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson, Paris; North-Holland, Amsterdam, 1970.  MR  Zbl
  8. P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer-Verlag, Berlin-Heidelberg-New York, 1967.  MR  Zbl
  9. R. Garner and T. Streicher, An essential local geometric morphism which is not locally connected though its inverse image part is an exponential ideal, Theory Appl. Categ. 37 (2021), 908–913.  MR  Zbl
  10. R. Gates, On generic separable objects, Theory Appl. Categ. 4 (1998), 208–248.  MR  Zbl
  11. J. W. Gray, Fibred and cofibred categories, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer-Verlag, New York, 1966, pp. 21–83.  DOI  MR  Zbl
  12. J. Hemelaer, Some toposes over which essential implies locally connected, Cah. Topol. Géom. Différ. Catég. 63 no. 4 (2022), 425–451.  MR  Zbl
  13. J. Hemelaer and M. Rogers, An essential, hyperconnected, local geometric morphism that is not locally connected, Appl. Categ. Structures 29 no. 4 (2021), 573–576.  DOI  MR  Zbl
  14. P. T. Johnstone, Sketches of an elephant: a topos theory compendium. Vols. 1–2, Oxford Logic Guides 43–44, The Clarendon Press, Oxford University Press, New York, 2002.  MR  Zbl
  15. P. T. Johnstone, Remarks on punctual local connectedness, Theory Appl. Categ. 25 (2011), 51–63.  MR  Zbl
  16. A. Kock, Synthetic differential geometry, second ed., London Mathematical Society Lecture Note Series 333, Cambridge University Press, Cambridge, 2006.  DOI  MR  Zbl
  17. F. W. Lawvere, Some thoughts on the future of category theory, in Category Theory (Como, 1990), Lecture Notes in Math. 1488, Springer, Berlin, 1991, pp. 1–13.  DOI  MR  Zbl
  18. F. W. Lawvere, Axiomatic cohesion, Theory Appl. Categ. 19 (2007), 41–49.  MR  Zbl
  19. F. W. Lawvere, Core varieties, extensivity, and rig geometry, Theory Appl. Categ. 20 (2008), 497–503.  MR  Zbl
  20. F. W. Lawvere and M. Menni, Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness, Theory Appl. Categ. 30 (2015), 909–932.  MR  Zbl
  21. S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer-Verlag, New York, 1992.  MR  Zbl
  22. F. Marmolejo and M. Menni, The canonical intensive quality of a cohesive topos, Theory Appl. Categ. 36 (2021), 250–279.  MR  Zbl
  23. M. Menni, Sufficient cohesion over atomic toposes, Cah. Topol. Géom. Différ. Catég. 55 no. 2 (2014), 113–149.  MR  Zbl
  24. M. Menni, The unity and identity of decidable objects and double-negation sheaves, J. Symb. Log. 83 no. 4 (2018), 1667–1679.  DOI  MR  Zbl
  25. M. Menni, A basis theorem for 2-rigs and rig geometry, Cah. Topol. Géom. Différ. Catég. 62 no. 4 (2021), 451–490.  MR  Zbl
  26. M. Menni, The hyperconnected maps that are local, J. Pure Appl. Algebra 225 no. 5 (2021), Paper No. 106596, 14 pp.  DOI  MR  Zbl
  27. M. Menni, Maps with discrete fibers and the origin of basepoints, Appl. Categ. Structures 30 no. 5 (2022), 991–1015.  DOI  MR  Zbl
  28. R. Street, Fibrations in bicategories, Cah. Topol. Géom. Différ. 21 no. 2 (1980), 111–160.  MR  Zbl
  29. D. Yetter, On right adjoints to exponential functors, J. Pure Appl. Algebra 45 no. 3 (1987), 287–304.  DOI  MR  Zbl