Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Extinction time of an epidemic with infection-age-dependent infectivity
Anicet Mougabe-Peurkor, Ibrahima Dramé, Modeste N'zi, and Étienne Pardoux
Volume 67, no. 2
(2024),
pp. 417–443
Published online: September 12, 2024
https://doi.org/10.33044/revuma.4032
Download PDF
Abstract
This paper studies the distribution function of the time of extinction of a subcritical
epidemic, when a large enough proportion of the population has been immunized and/or the
infectivity of the infectious individuals has been reduced, so that the effective
reproduction number is less than one. We do that for a SIR/SEIR model, where infectious
individuals have an infection-age-dependent infectivity, as in the model introduced in
Kermack and McKendrick's seminal 1927 paper. Our main conclusion is that simplifying the
model as an ODE SIR model, as it is largely done in the epidemics literature, introduces a
bias toward shorter extinction time.
References
-
K. B. Athreya and P. E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. DOI MR Zbl
-
P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics, Wiley, New York, 1999. DOI MR Zbl
-
T. Britton and E. Pardoux (eds.), Stochastic epidemic models with inference, Lecture Notes in Mathematics 2255, Springer, Cham, 2019. DOI MR Zbl
-
K. S. Crump and C. J. Mode, A general age-dependent branching process. I, J. Math. Anal. Appl. 24 (1968), 494–508. DOI MR Zbl
-
K. S. Crump and C. J. Mode, A general age-dependent branching process. II, J. Math. Anal. Appl. 25 (1969), 8–17. DOI MR Zbl
-
R. Forien, G. Pang, and E. Pardoux, Epidemic models with varying infectivity, SIAM J. Appl. Math. 81 no. 5 (2021), 1893–1930. DOI MR Zbl
-
R. Forien, G. Pang, and E. Pardoux, Multi-patch multi-group epidemic model with varying infectivity, Probab. Uncertain. Quant. Risk 7 no. 4 (2022), 333–364. DOI MR Zbl
-
Q. Griette, Z. Liu, P. Magal, and R. N. Thompson, Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study, in Mathematics of public health, Fields Inst. Commun. 85, Springer, Cham, 2022, pp. 173–195. DOI MR Zbl
-
X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, and G. M. Leung, Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat. Med. 26 (2020), 672–675. DOI
-
Y. Iwasa, M. A. Nowak, and F. Michor, Evolution of resistance during clonal expansion, Genetics 172 no. 4 (2006), 2557–2566. DOI
-
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A 115 (1927), 700–721. DOI
-
E. Pardoux, Markov processes and applications: algorithms, networks, genome and finance, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester; Dunod, Paris, 2008. DOI MR Zbl
|