Revista de la
Unión Matemática Argentina
Complete presentation and Hilbert series of the mixed braid monoid $MB_{1,3}$
Zaffar Iqbal, Muhammad Mobeen Munir, Maleeha Ayub, and Abdul Rauf Nizami

Volume 67, no. 2 (2024), pp. 503–516    

Published online (final version): September 25, 2024

https://doi.org/10.33044/revuma.3479

Download PDF

Abstract

The Hilbert series is the simplest way of finding dimension and degree of an algebraic variety defined explicitly by polynomial equations. The mixed braid groups were introduced by Sofia Lambropoulou in 2000. In this paper we compute the complete presentation and the Hilbert series of the canonical words of the mixed braid monoid $MB_{1,3}$.

References

  1. U. Ali and Z. Iqbal, Hilbert series of Artin monoid $M(I_2(p))$, Southeast Asian Bull. Math. 37 no. 4 (2013), 475–480.  MR  Zbl
  2. U. Ali, Z. Iqbal, and S. Nazir, Canonical forms and infimum of positive braids, Algebra Colloq. 18 no. Special Issue 1 (2011), 1007–1016.  DOI  MR  Zbl
  3. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 no. 1 (1925), 47–72.  DOI  MR  Zbl
  4. G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 no. 2 (1978), 178–218.  DOI  MR  Zbl
  5. P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.  MR  Zbl
  6. Z. Iqbal, Combinatorial problems in braid groups, Ph.D. thesis, Abdus Salam School of Mathematical Sciences, Government College University Lahore, Pakistan, 2004.
  7. Z. Iqbal, Hilbert series of positive braids, Algebra Colloq. 18 no. Special Issue 1 (2011), 1017–1028.  DOI  MR  Zbl
  8. Z. Iqbal, Hilbert series of the finite dimensional generalized Hecke algebras, Turkish J. Math. 39 no. 5 (2015), 698–705.  DOI  MR  Zbl
  9. Z. Iqbal and S. Yousaf, Hilbert series of the braid monoid $MB_4$ in band generators, Turkish J. Math. 38 no. 6 (2014), 977–984.  DOI  MR  Zbl
  10. A. Kumar and R. Sarkar, Hilbert series of binomial edge ideals, Comm. Algebra 47 no. 9 (2019), 3830–3841.  DOI  MR  Zbl
  11. S. Lambropoulou, Solid torus links and Hecke algebras of $\mathscr{B}$-type, in Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), World Scientific, River Edge, NJ, 1994, pp. 225–245.  MR  Zbl
  12. S. Lambropoulou, Braid structures in knot complements, handlebodies and 3-manifolds, in Knots in Hellas '98 (Delphi), Ser. Knots Everything 24, World Scientific, River Edge, NJ, 2000, pp. 274–289.  DOI  MR  Zbl
  13. J. Mairesse and F. Mathéus, Growth series for Artin groups of dihedral type, Internat. J. Algebra Comput. 16 no. 6 (2006), 1087–1107.  DOI  MR  Zbl
  14. K. Saito, Growth functions for Artin monoids, Proc. Japan Acad. Ser. A Math. Sci. 85 no. 7 (2009), 84–88.  DOI  MR  Zbl