Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Complete presentation and Hilbert series of the mixed braid monoid $MB_{1,3}$
Zaffar Iqbal, Muhammad Mobeen Munir, Maleeha Ayub, and Abdul Rauf Nizami
Volume 67, no. 2
(2024),
pp. 503–516
Published online (final version): September 25, 2024
https://doi.org/10.33044/revuma.3479
Download PDF
Abstract
The Hilbert series is the simplest way of finding dimension and degree of an algebraic
variety defined explicitly by polynomial equations. The mixed braid groups were introduced
by Sofia Lambropoulou in 2000. In this paper we compute the complete presentation and the
Hilbert series of the canonical words of the mixed braid monoid $MB_{1,3}$.
References
-
U. Ali and Z. Iqbal, Hilbert series of Artin monoid $M(I_2(p))$, Southeast Asian Bull. Math. 37 no. 4 (2013), 475–480. MR Zbl
-
U. Ali, Z. Iqbal, and S. Nazir, Canonical forms and infimum of positive braids, Algebra Colloq. 18 no. Special Issue 1 (2011), 1007–1016. DOI MR Zbl
-
E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 no. 1 (1925), 47–72. DOI MR Zbl
-
G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 no. 2 (1978), 178–218. DOI MR Zbl
-
P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR Zbl
-
Z. Iqbal, Combinatorial problems in braid groups, Ph.D. thesis, Abdus Salam School of Mathematical Sciences, Government College University Lahore, Pakistan, 2004.
-
Z. Iqbal, Hilbert series of positive braids, Algebra Colloq. 18 no. Special Issue 1 (2011), 1017–1028. DOI MR Zbl
-
Z. Iqbal, Hilbert series of the finite dimensional generalized Hecke algebras, Turkish J. Math. 39 no. 5 (2015), 698–705. DOI MR Zbl
-
Z. Iqbal and S. Yousaf, Hilbert series of the braid monoid $MB_4$ in band generators, Turkish J. Math. 38 no. 6 (2014), 977–984. DOI MR Zbl
-
A. Kumar and R. Sarkar, Hilbert series of binomial edge ideals, Comm. Algebra 47 no. 9 (2019), 3830–3841. DOI MR Zbl
-
S. Lambropoulou, Solid torus links and Hecke algebras of $\mathscr{B}$-type, in Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), World Scientific, River Edge, NJ, 1994, pp. 225–245. MR Zbl
-
S. Lambropoulou, Braid structures in knot complements, handlebodies and 3-manifolds, in Knots in Hellas '98 (Delphi), Ser. Knots Everything 24, World Scientific, River Edge, NJ, 2000, pp. 274–289. DOI MR Zbl
-
J. Mairesse and F. Mathéus, Growth series for Artin groups of dihedral type, Internat. J. Algebra Comput. 16 no. 6 (2006), 1087–1107. DOI MR Zbl
-
K. Saito, Growth functions for Artin monoids, Proc. Japan Acad. Ser. A Math. Sci. 85 no. 7 (2009), 84–88. DOI MR Zbl
|