Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Evolution of first eigenvalues of some geometric operators under the rescaled List's extended Ricci flow
Shahroud Azami and Abimbola Abolarinwa
Volume 67, no. 2
(2024),
pp. 529–543
Published online (final version): October 9, 2024
https://doi.org/10.33044/revuma.3413
Download PDF
Abstract
Let (M,g(t),e−ϕdν) be a compact weighted Riemannian manifold and let
(g(t),ϕ(t)) evolve by the rescaled List's extended Ricci flow. In this paper, we
study the evolution equations for first eigenvalues of the geometric operators,
−Δϕ+cSa, along the rescaled List's extended Ricci flow. Here
Δϕ=Δ−∇ϕ.∇ is a symmetric diffusion operator, ϕ∈C∞(M), S=R−α|∇ϕ|2, R is the scalar curvature with respect to
the metric g(t) and a,c are some constants. As an application, we obtain some
monotonicity results under the rescaled List's extended Ricci flow.
References
-
A. Abolarinwa, Eigenvalues of the weighted Laplacian under the extended Ricci flow, Adv. Geom. 19 no. 1 (2019), 131–143. DOI MR Zbl
-
A. Abolarinwa and S. Azami, First eigenvalues evolution for some geometric operators along the Yamabe flow, J. Geom. 115 no. 1 (2024), Paper No. 18, 16 pp. DOI MR Zbl
-
S. Azami, First eigenvalues of geometric operator under the Ricci-Bourguignon flow, J. Indones. Math. Soc. 24 no. 1 (2018), 51–60. DOI MR Zbl
-
S. Azami, Evolution of eigenvalues of geometric operator under the rescaled List's extended Ricci flow, Bull. Iranian Math. Soc. 48 no. 4 (2022), 1265–1279. DOI MR Zbl
-
X. Cao, Eigenvalues of (−Δ+R2) on manifolds with nonnegative curvature operator, Math. Ann. 337 no. 2 (2007), 435–441. DOI MR Zbl
-
X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 no. 11 (2008), 4075–4078. DOI MR Zbl
-
B. Chen, Q. He, and F. Zeng, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Pacific J. Math. 296 no. 1 (2018), 1–20. DOI MR Zbl
-
S. Fang, H. Xu, and P. Zhu, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math. 58 no. 8 (2015), 1737–1744. DOI MR Zbl
-
S. Fang, F. Yang, and P. Zhu, Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow, Glasg. Math. J. 59 no. 3 (2017), 743–751. DOI MR Zbl
-
G. Huang and Z. Li, Monotonicity formulas of eigenvalues and energy functionals along the rescaled List's extended Ricci flow, Mediterr. J. Math. 15 no. 2 (2018), Paper No. 63, 20 pp. DOI MR Zbl
-
J. Li, Evolution of eigenvalues along rescaled Ricci flow, Canad. Math. Bull. 56 no. 1 (2013), 127–135. DOI MR Zbl
-
B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 no. 5 (2008), 1007–1048. DOI MR Zbl
-
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. arXiv:0211159 [math.DG].
-
F. Yang and L. Zhang, On the evolution and monotonicity of first eigenvalues under the Ricci flow, Hokkaido Math. J. 51 no. 1 (2022), 107–116. DOI MR Zbl
|