Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Large-scale homogeneity and isotropy versus fine-scale condensation: A model based on Muckenhoupt-type densities
Hugo Aimar and Federico Morana
Volume 68, no. 1
(2025),
pp. 69–78
Published online (final version): March 29, 2025
https://doi.org/10.33044/revuma.3670
Download PDF
Abstract
In this brief note we aim to provide, through a well-known class of singular densities in
harmonic analysis, a simple approach to the fact that the homogeneity of the universe on
scales of the order of a hundred million light years is entirely compatible with the fine-
scale condensation of matter and energy. We give precise and quantitative definitions of
homogeneity and isotropy on large scales. Then we show that Muckenhoupt densities have the
ingredients required for a model of the large-scale homogeneity and the fine-scale
condensation of the universe. In particular, these densities can take locally infinitely
large values (black holes) and, at the same time, they are independent of location at
large scales. We also show some locally singular densities that satisfy the large-scale
isotropy property.
References
-
H. Aimar, M. Carena, R. Durán, and M. Toschi, Powers of distances to lower dimensional sets as Muckenhoupt weights, Acta Math. Hungar. 143 no. 1 (2014), 119–137. DOI MR Zbl
-
T. C. Anderson, J. Lehrbäck, C. Mudarra, and A. V. Vähäkangas, Weakly porous sets and Muckenhoupt ${A}_p$ distance functions, J. Funct. Anal. 287 no. 8 (2024), article no. 110558, 34 pp. DOI MR Zbl
-
R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. DOI MR Zbl
-
R. G. Durán and F. López García, Solutions of the divergence and analysis of the Stokes equations in planar Hölder-$\alpha$ domains, Math. Models Methods Appl. Sci. 20 no. 1 (2010), 95–120. DOI MR Zbl
-
B. Dyda, L. Ihnatsyeva, J. Lehrbäck, H. Tuominen, and A. V. Vähäkangas, Muckenhoupt $A_p$-properties of distance functions and applications to Hardy–Sobolev-type inequalities, Potential Anal. 50 no. 1 (2019), 83–105. DOI MR Zbl
-
J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985. MR Zbl
-
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, CA, 1973. MR
-
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
-
F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 no. 1 (1987), 179–194. DOI MR Zbl
-
E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993. DOI MR Zbl
|