Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
An improved lopsided shift-splitting preconditioner for three-by-three block saddle point problems
Jun Li and Xiangtuan Xiong
Volume 68, no. 1
(2025),
pp. 131–144
Published online (final version): April 3, 2025
https://doi.org/10.33044/revuma.3672
Download PDF
Abstract
We consider an improved lopsided shift-splitting (ILSS) preconditioner for solving three-
by-three block saddle point problems. This method enhances the work of Zhang et al.
[Comput. Appl. Math. 41 (2022), 261]. We prove that the iteration method produced by the
ILSS preconditioner is unconditionally convergent. Additionally, we show that all
eigenvalues of the ILSS preconditioned matrix are real, with non-unit eigenvalues located
in a positive interval. Numerical experiments demonstrate the effectiveness of the ILSS
preconditioner.
References
-
M. Abdolmaleki, S. Karimi, and D. K. Salkuyeh, A new block-diagonal preconditioner for a class of $3\times 3$ block saddle point problems, Mediterr. J. Math. 19 no. 1 (2022), Paper No. 43. DOI MR Zbl
-
H. Aslani and D. K. Salkuyeh, Semi-convergence of the APSS method for a class of nonsymmetric three-by-three singular saddle point problems, 2022. arXiv:2208.00814 [math.NA].
-
H. Aslani, D. K. Salkuyeh, and F. P. A. Beik, On the preconditioning of three-by-three block saddle point problems, Filomat 35 no. 15 (2021), 5181–5194. DOI MR
-
Y. Cao, Shift-splitting preconditioners for a class of block three-by-three saddle point problems, Appl. Math. Lett. 96 (2019), 40–46. DOI MR Zbl
-
P. Degond and P.-A. Raviart, An analysis of the Darwin model of approximation to Maxwell's equations, Forum Math. 4 no. 1 (1992), 13–44. DOI MR Zbl
-
D. Han and X. Yuan, Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal. 51 no. 6 (2013), 3446–3457. DOI MR Zbl
-
K. Hu and J. Xu, Structure-preserving finite element methods for stationary MHD models, Math. Comp. 88 no. 316 (2019), 553–581. DOI MR Zbl
-
N. Huang, Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems, Numer. Algorithms 85 no. 4 (2020), 1233–1254. DOI MR Zbl
-
N. Huang, Y.-H. Dai, and Q. Hu, Uzawa methods for a class of block three-by-three saddle-point problems, Numer. Linear Algebra Appl. 26 no. 6 (2019), e2265. DOI MR Zbl
-
N. Huang and C.-F. Ma, Spectral analysis of the preconditioned system for the $3\times3$ block saddle point problem, Numer. Algorithms 81 no. 2 (2019), 421–444. DOI MR Zbl
-
Q. Liu, C. Chen, and Q. Zhang, Perturbation analysis for total least squares problems with linear equality constraint, Appl. Numer. Math. 161 (2021), 69–81. DOI MR Zbl
-
L. Meng, J. Li, and S.-X. Miao, A variant of relaxed alternating positive semi-definite splitting preconditioner for double saddle point problems, Japan J. Ind. Appl. Math. 38 no. 3 (2021), 979–998. DOI MR Zbl
-
P. Monk, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal. 29 no. 3 (1992), 714–729. DOI MR Zbl
-
D. K. Salkuyeh, H. Aslani, and Z.-Z. Liang, An alternating positive semidefinite splitting preconditioner for the three-by-three block saddle point problems, Math. Commun. 26 no. 2 (2021), 177–195. MR Zbl Available at https://hrcak.srce.hr/261512.
-
L. Wang and K. Zhang, Generalized shift-splitting preconditioner for saddle point problems with block three-by-three structure, Open Access Library J. 6 (2019), e5968. DOI
-
N.-N. Wang and J.-C. Li, On parameterized block symmetric positive definite preconditioners for a class of block three-by-three saddle point problems, J. Comput. Appl. Math. 405 (2022), Paper No. 113959. DOI MR Zbl
-
X. Xie and H.-B. Li, A note on preconditioning for the $3\times 3$ block saddle point problem, Comput. Math. Appl. 79 no. 12 (2020), 3289–3296. DOI MR Zbl
-
N. Zhang, R.-X. Li, and J. Li, Lopsided shift-splitting preconditioner for saddle point problems with three-by-three structure, Comput. Appl. Math. 41 no. 6 (2022), Paper No. 261. DOI MR Zbl
|