Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Differential graded Brauer groups
Alexander Zimmermann
Volume 68, no. 1
(2025),
pp. 297–308
Published online (final version): May 28, 2025
https://doi.org/10.33044/revuma.4034
Download PDF
Abstract
We consider central simple $K$-algebras which happen to be differential graded
$K$-algebras. Two such algebras $A$ and $B$ are considered equivalent if there are bounded
complexes of finite-dimensional $K$-vector spaces $C_A$ and $C_B$ such that the
differential graded algebras $A\otimes_K \mathrm{End}_K^\bullet(C_A)$ and $B\otimes_K
\mathrm{End}_K^\bullet(C_B)$ are isomorphic. Equivalence classes form an abelian group,
which we call the dg Brauer group. We prove that this group is isomorphic to the ordinary
Brauer group of the field $K$.
References
-
S. T. Aldrich and J. R. García Rozas, Exact and semisimple differential graded algebras, Comm. Algebra 30 no. 3 (2002), 1053–1075. DOI MR Zbl
-
H. Cartan, DGA-algèbres et DGA-modules, Sémin. Henri Cartan, tome 7, no. 1 (1954–1955), exp. no. 2, 1–9. Available at https://www.numdam.org/item/SHC_1954-1955__7_1_A2_0/.
-
S. Dăscălescu, B. Ion, C. Năstăsescu, and J. Rios Montes, Group gradings on full matrix rings, J. Algebra 220 no. 2 (1999), 709–728. DOI MR Zbl
-
P. Gupta, Y. Kaur, and A. Singh, Differential central simple algebras, in Geometry, groups and mathematical philosophy, Contemp. Math. 811, American Mathematical Society, Providence, RI, 2025, pp. 113–121. DOI MR
-
I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs 15, Mathematical Association of America, distributed by Wiley, New York, 1968. MR Zbl
-
B. Keller, Derived categories and tilting, in Handbook of tilting theory, London Math. Soc. Lecture Note Ser. 332, Cambridge University Press, Cambridge, 2007, pp. 49–104. DOI MR
-
D. Orlov, Finite-dimensional differential graded algebras and their geometric realizations, Adv. Math. 366 (2020), article no. 107096. DOI MR Zbl
-
The Stacks project authors, The Stacks project, 2025, https://stacks.math.columbia.edu.
-
M. K. Turbow, Structure theory of graded central simple algebras, Ph.D. thesis, University of Georgia, 2016.
-
F. Van Oystaeyen and Y. Zhang, The Brauer group of a braided monoidal category, J. Algebra 202 no. 1 (1998), 96–128. DOI MR Zbl
-
C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1964), 187–199. DOI MR Zbl
-
A. Zimmermann, Differential graded orders, their class groups and idèles, [v1] 2023, [v3] 2024. arXiv:2310.06340v3 [math.RA].
|