Revista de la
Unión Matemática Argentina
Principality by reduced ideals in pure cubic number fields
Jamal Benamara and Mohammed Talbi

Volume 68, no. 1 (2025), pp. 309–325    

Published online (final version): June 2, 2025

https://doi.org/10.33044/revuma.3862

Download PDF

Abstract

This paper describes a method for determining the list of reduced ideals of any pure cubic number field, which we can use for testing the principality of these fields and give a generator for a principal ideal.

References

  1. Ş. Alaca and K. S. Williams, Introductory algebraic number theory, Cambridge University Press, Cambridge, 2004.  MR  Zbl
  2. A. Azizi, J. Benamara, M. C. Ismaili, and M. Talbi, The reduced ideals of a special order in a pure cubic number field, Arch. Math. (Brno) 56 no. 3 (2020), 171–182.  DOI  MR  Zbl
  3. J. Buchmann, On the computation of units and class numbers by a generalization of Lagrange's algorithm, J. Number Theory 26 no. 1 (1987), 8–30.  DOI  MR  Zbl
  4. J. Buchmann and H. C. Williams, A key-exchange system based on imaginary quadratic fields, J. Cryptology 1 no. 2 (1988), 107–118.  DOI  MR  Zbl
  5. H. Cohen, A course in computational algebraic number theory, Grad. Texts in Math. 138, Springer, Berlin, 1993.  DOI  MR  Zbl
  6. B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Transl. Math. Monogr. 10, American Mathematical Society, Providence, RI, 1964.  MR  Zbl
  7. G. T. Jacobs, Reduced ideals and periodic sequences in pure cubic fields, Ph.D. thesis, University of North Texas, 2015.  DOI  MR
  8. R. A. Mollin, Quadratics, Discrete Math. Appl., CRC Press, Boca Raton, FL, 1996.  MR  Zbl
  9. J. Neukirch, Algebraic number theory, Grundlehren Math. Wiss. 322, Springer, Berlin, 1999.  DOI  MR  Zbl
  10. J. J. Payan, Sur le groupe des classes d'un corps quadratique, Cours de l'institut Fourier 7 (1972), 2–30. Available at http://www.numdam.org/item?id=CIF_1972__7__2_0.
  11. C. Prabpayak, Orders in pure cubic number fields, Grazer Math. Ber. 361, Institut für Mathematik, Karl-Franzens-Universität Graz, Graz, 2014.  MR  Zbl
  12. R. Scheidler, J. A. Buchmann, and H. C. Williams, A key-exchange protocol using real quadratic fields, J. Cryptology 7 no. 3 (1994), 171–199.  DOI  MR  Zbl