Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the Pythagoras number for polynomials of degree 4 in 5 variables
Santiago Laplagne
Volume 68, no. 1
(2025),
pp. 343–348
Published online (final version): June 30, 2025
https://doi.org/10.33044/revuma.4224
Download PDF
Abstract
We give an example of a polynomial of degree 4 in 5 variables that is the sum of squares
of 8 polynomials and cannot be decomposed as the sum of 7 squares. This improves the
current existing lower bound of 7 polynomials for the Pythagoras number $p(5,4)$.
References
-
G. Blekherman, Nonnegative polynomials and sums of squares, J. Amer. Math. Soc. 25 no. 3 (2012), 617–635. DOI MR Zbl
-
G. Blekherman, Nonnegative polynomials and sums of squares, in Semidefinite optimization and convex algebraic geometry, MOS-SIAM Ser. Optim. 13, SIAM, Philadelphia, PA, 2013, pp. 159–202. DOI MR Zbl
-
J. Capco and C. Scheiderer, Two remarks on sums of squares with rational coefficients, in Algebra, logic and number theory, Banach Center Publ. 121, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2020, pp. 25–36. DOI MR Zbl
-
L. Chua, D. Plaumann, R. Sinn, and C. Vinzant, Gram spectrahedra, in Ordered algebraic structures and related topics, Contemp. Math. 697, American Mathematical Society, Providence, RI, 2017, pp. 81–105. DOI MR Zbl
-
S. Laplagne, Pythagoras numbers, 2023. Available at https://bitbucket.org/slaplagne/pythagoras-numbers/.
-
S. Laplagne and M. Valdettaro, Strictly positive polynomials in the boundary of the SOS cone, J. Symbolic Comput. 127 (2025), article no. 102359. DOI MR Zbl
-
Maple 2015, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
-
P. A. Parrilo, Polynomial optimization, sums of squares, and applications, in Semidefinite optimization and convex algebraic geometry, MOS-SIAM Ser. Optim. 13, SIAM, Philadelphia, PA, 2013, pp. 47–157. DOI MR Zbl
-
C. Scheiderer, Sum of squares length of real forms, Math. Z. 286 no. 1-2 (2017), 559–570. DOI MR Zbl
|