|
|||
Current volumePast volumes
1952-1968
1944-1951
1936-1944 |
Existence and uniqueness
of solutions to distributional differential equations involving
Henstock–Kurzweil–Stieltjes integrals
Volume 60, no. 2
(2019),
pp. 443–458
https://doi.org/10.33044/revuma.v60n2a11
Abstract
This paper is concerned with the existence and uniqueness of
solutions to the second order distributional differential equation
with Neumann boundary value problem via Henstock–Kurzweil–Stieltjes
integrals.The existence of solutions is derived from Schauder's
fixed point theorem, and the uniqueness of solutions is established
by Banach's contraction principle. Finally, two examples are
given to demonstrate the main results.
|
||
Published by the Unión Matemática Argentina |