Published volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Orlicz version of mixed moment tensors
Chang-Jian Zhao
Volume 63, no. 2
(2022),
pp. 475–488
https://doi.org/10.33044/revuma.2181
Download PDF
Abstract
Our main aim is to generalize the moment tensors $\mathbf{\Psi}_{r}(K)$ to
the Orlicz space. Under the framework of the Orlicz–Brunn–Minkowski theory, we
introduce a new affine geometric quantity $\mathbf{\Psi}_{\psi,r}(K,L)$, and call it
Orlicz mixed moment tensors of convex bodies $K$ and $L$. The fundamental
notions and properties of the moment tensors as well as related Minkowski
and Brunn–Minkowski inequalities are then extended to the Orlicz setting.
Diverse inequalities for certain new $L_p$-mixed moment tensors
$\mathbf{\Psi}_{p,r}(K,L)$ are also derived. The new Orlicz inequalities in special
cases yield the Orlicz–Minkowski and the
Orlicz–Brunn–Minkowski inequalities, respectively.
References
-
A. D. Aleksandrov, On the theory of mixed volumes. I. Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N.S.) 2 (1937), 947–972 (in Russian).
-
Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren der mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988. MR 0936419.
-
H. Busemann, Convex Surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience, New York, 1958. MR 0105155.
-
W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938), no. 3, 1–31.
-
Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 0141003.
-
R. J. Gardner, Geometric Tomography, second edition, Encyclopedia of Mathematics and its Applications, 58, Cambridge University Press, New York, 2006. MR 2251886.
-
R. J. Gardner, D. Hug, and W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom. 97 (2014), no. 3, 427–476. MR 3263511.
-
C. Haberl, E. Lutwak, D. Yang, and G. Zhang., The even Orlicz Minkowski problem, Adv. Math. 224 (2010), no. 6, 2485–2510. MR 2652213.
-
C. Haberl and L. Parapatits, The centro-affine Hadwiger theorem, J. Amer. Math. Soc. 27 (2014), no. 3, 685–705. MR 3194492.
-
C. Haberl and F. E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600.
-
C. Haberl and F. E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028.
-
C. Haberl, F. E. Schuster, and J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann. 352 (2012), no. 3, 517–542. MR 2885586.
-
J. Hoffmann-Jørgensen, Probability with a View Toward Statistics. Vol. I, Chapman & Hall Probability Series, Chapman & Hall, New York, 1994. MR 1278485.
-
Q. Huang and B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48 (2012), no. 2, 281–297. MR 2946448.
-
M. A. Krasnoselʹskiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, 1961. MR 0126722.
-
J. Li and D. Ma, Laplace transforms and valuations, J. Funct. Anal. 272 (2017), no. 2, 738–758. MR 3571907.
-
Y. Lin, Affine Orlicz Pólya-Szegö principle for log-concave functions, J. Funct. Anal. 273 (2017), no. 10, 3295–3326. MR 3695895.
-
M. Ludwig and M. Reitzner, A classification of ${\rm SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490.
-
E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704.
-
E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681.
-
E. Lutwak, D. Yang, and G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023.
-
E. Lutwak, D. Yang, and G. Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17–38. MR 1987375.
-
E. Lutwak, D. Yang, and G. Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. MR 2067123.
-
E. Lutwak, D. Yang, and G. Zhang, $L_p$ John ellipsoids, Proc. London Math. Soc. (3) 90 (2005), no. 2, 497–520. MR 2142136.
-
E. Lutwak, D. Yang, and G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220–242. MR 2563216.
-
E. Lutwak, D. Yang, and G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365–387. MR 2652465.
-
E. Lutwak, D. Yang, and G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. in Appl. Math. 48 (2012), no. 2, 407–413. MR 2873885.
-
L. Parapatits, ${\rm SL}(n)$-covariant $L_p$-Minkowski valuations, J. Lond. Math. Soc. (2) 89 (2014), no. 2, 397–414. MR 3188625.
-
L. Parapatits, ${\rm SL}(n)$-contravariant $L_p$-Minkowski valuations, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1195–1211. MR 3145728.
-
M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. MR 1113700.
-
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, second expanded edition, Encyclopedia of Mathematics and its Applications, 151, Cambridge University Press, Cambridge, 2014. MR 3155183.
-
C. Schütt and E. Werner, Surface bodies and $p$-affine surface area, Adv. Math. 187 (2004), no. 1, 98–145. MR 2074173.
-
E. M. Werner, Rényi divergence and $L_p$-affine surface area for convex bodies, Adv. Math. 230 (2012), no. 3, 1040–1059. MR 2921171.
-
E. Werner and D. Ye, New $L_p$ affine isoperimetric inequalities, Adv. Math. 218 (2008), no. 3, 762–780. MR 2414321.
-
D. Xi, H. Jin, and G. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math. 260 (2014), 350–374. MR 3209355.
-
C.-J. Zhao, Orlicz dual mixed volumes, Results Math. 68 (2015), no. 1-2, 93–104. MR 3391494.
-
C.-J. Zhao, Orlicz dual affine quermassintegrals, Forum Math. 30 (2018), no. 4, 929–945. MR 3824799.
-
C.-J. Zhao, Orlicz-Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms, Quaest. Math. 41 (2018), no. 7, 937–950. MR 3882049.
-
C.-J. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Funct. Spaces 2018, Art. ID 9752178, 16 pp. MR 3859786.
|