Revista de la
Unión Matemática Argentina
Nondegenerate extensions of near-group braided fusion categories
Andrew Schopieray
Volume 64, no. 2 (2023), pp. 413–438    

https://doi.org/10.33044/revuma.2866

Download PDF

Abstract

This is a study of weakly integral braided fusion categories with elementary fusion rules to determine which possess nondegenerately braided extensions of theoretically minimal dimension, or equivalently in this case, which satisfy the minimal modular extension conjecture. We classify near-group braided fusion categories satisfying the minimal modular extension conjecture; the remaining Tambara–Yamagami braided fusion categories provide arbitrarily large families of braided fusion categories with identical fusion rules violating the minimal modular extension conjecture. These examples generalize to braided fusion categories with the fusion rules of the representation categories of extraspecial $p$-groups for any prime $p$, which possess a minimal modular extension only if they arise as the adjoint subcategory of a twisted double of an extraspecial $p$-group.

References

  1. A. Davydov, M. Müger, D. Nikshych, and V. Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135–177. MR 3039775.
  2. V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, Group-theoretical properties of nilpotent modular categories, arXiv:0704.0195 [math.QA], 2007.
  3. V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, On braided fusion categories I, Selecta Math. (N.S.) 16 (2010), no. 1, 1–119. MR 2609644.
  4. P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories, Mathematical Surveys and Monographs, 205, American Mathematical Society, Providence, RI, 2015. MR 3242743.
  5. P. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279.
  6. P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (2010), no. 3, 209–273. MR 2677836.
  7. C. Galindo, Trivializing group actions on braided crossed tensor categories and graded braided tensor categories, J. Math. Soc. Japan 74 (2022), no. 3, 735–752. MR 4484228.
  8. C. Galindo and C. F. Venegas-Ramírez, Categorical fermionic actions and minimal modular extensions, arXiv:1712.07097 [math.QA], 2017.
  9. T. Gannon, P. Ruelle, and M. A. Walton, Automorphism modular invariants of current algebras, Comm. Math. Phys. 179 (1996), no. 1, 121–156. MR 1395219.
  10. T. Gannon and A. Schopieray, Algebraic number fields generated by Frobenius–Perron dimensions in fusion rings, arXiv:1912.12260 [math.QA], 2019.
  11. S. Gelaki and D. Nikshych, Nilpotent fusion categories, Adv. Math. 217 (2008), no. 3, 1053–1071. MR 2383894.
  12. C. Goff, G. Mason, and S.-H. Ng, On the gauge equivalence of twisted quantum doubles of elementary abelian and extra-special 2-groups, J. Algebra 312 (2007), no. 2, 849–875. MR 2333187.
  13. B. Huppert, Character Theory of Finite Groups, De Gruyter Expositions in Mathematics, 25, Walter de Gruyter & Co., Berlin, 1998. MR 1645304.
  14. T. Lan, L. Kong, and X.-G. Wen, Modular extensions of unitary braided fusion categories and $2+1\mathrm{D}$ topological/SPT orders with symmetries, Comm. Math. Phys. 351 (2017), no. 2, 709–739. MR 3613518.
  15. Á. Muñoz and B. Uribe, Classification of pointed fusion categories of dimension 8 up to weak Morita equivalence, Comm. Algebra 46 (2018), no. 9, 3873–3888. MR 3820602.
  16. M. Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291–308. MR 1990929.
  17. V. Ostrik, Fusion categories of rank 2, Math. Res. Lett. 10 (2003), no. 2-3, 177–183. MR 1981895.
  18. A. Schopieray, Lie theory for fusion categories: a research primer, in Topological Phases of Matter and Quantum Computation, 1–26, Contemp. Math., 747, Amer. Math. Soc., RI, 2020. MR 4079742.
  19. G. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc. 19 (1968), 459–461. MR 0222160.
  20. K. Shimizu, Frobenius–Schur indicators in Tambara–Yamagami categories, J. Algebra 332 (2011), 543–564. MR 2774703.
  21. J. Siehler, Braided near-group categories, arXiv:math/0011037 [math.QA], 2000.
  22. J. Siehler, Near-group categories, Algebr. Geom. Topol. 3 (2003), 719–775. MR 1997336.
  23. D. Tambara, Representations of tensor categories with fusion rules of self-duality for abelian groups, Israel J. Math. 118 (2000), 29–60. MR 1776075.
  24. D. Tambara and S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra 209 (1998), no. 2, 692–707. MR 1659954.
  25. J. E. Thornton, Generalized Near-Group Categories, Thesis (Ph.D.)—University of Oregon, 2012. https://hdl.handle.net/1794/12450.
  26. C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281–298. MR 0156890.