Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On conformal geometry of four-dimensional generalized symmetric spaces
Amirhesam Zaeim, Yadollah AryaNejad, and Mokhtar Gheitasi
Volume 65, no. 1
(2023),
pp. 135–153
https://doi.org/10.33044/revuma.2086
Download PDF
Abstract
We study conformal geometry on an important class of four-dimensional
(pseudo-)Riemannian manifolds: generalized symmetric spaces. This
leads to the general description of conformally Einstein metrics on
the spaces under consideration. Finally, the class of oscillator Lie groups
is studied for the conformally Einstein property.
References
-
H. W. Brinkmann, Riemann spaces conformal to Einstein spaces, Math. Ann. 91 (1924), no. 3-4, 269–278. MR 1512193.
-
H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), no. 1, 119–145. MR 1512246.
-
G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007), no. 4, 1279–1291. MR 2287304.
-
G. Calvaruso, Oscillator spacetimes are Ricci solitons, Nonlinear Anal. 140 (2016), 254–269. MR 3492737.
-
G. Calvaruso and E. Rosado, Ricci solitons on low-dimensional generalized symmetric spaces, J. Geom. Phys. 112 (2017), 106–117. MR 3588761.
-
G. Calvaruso and A. Zaeim, Geometric structures over four-dimensional generalized symmetric spaces, Mediterr. J. Math. 10 (2013), no. 2, 971–987. MR 3045690.
-
G. Calvaruso and A. Zaeim, A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys. 80 (2014), 15–25. MR 3188790.
-
G. Calvaruso and A. Zaeim, Four-dimensional homogeneous Lorentzian manifolds, Monatsh. Math. 174 (2014), no. 3, 377–402. MR 3223494.
-
G. Calvaruso and A. Zaeim, Geometric structures over non-reductive homogeneous 4-spaces, Adv. Geom. 14 (2014), no. 2, 191–214. MR 3263422.
-
G. Calvaruso and A. Zaeim, Symmetries of Lorentzian three-manifolds with recurrent curvature, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 063, 12 pp. MR 3514944.
-
G. Calvaruso and A. Zaeim, On the symmetries of the Lorentzian oscillator group, Collect. Math. 68 (2017), no. 1, 51–67. MR 3591464.
-
G. Calvaruso and A. Zaeim, Conformal geometry of semi-direct extensions of the Heisenberg group, J. Math. Phys. Anal. Geom. 17 (2021), no. 4, 407–421. MR 4353406.
-
E. Calviño-Louzao, E. García-Río, I. Gutiérrez-Rodríguez, and R. Vázquez-Lorenzo, Conformal geometry of non-reductive four-dimensional homogeneous spaces, Math. Nachr. 290 (2017), no. 10, 1470–1490. MR 3672891.
-
J. Černý and O. Kowalski, Classification of generalized symmetric pseudo-Riemannian spaces of dimension $n\leq 4$, Tensor (N.S.) 38 (1982), 255–267. MR 0832656.
-
M. Chaichi and A. Zaeim, Locally homogeneous four-dimensional manifolds of signature $(2,2)$, Math. Phys. Anal. Geom. 16 (2013), no. 4, 345–361. MR 3133853.
-
B. De Leo and J. Van der Veken, Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces, Geom. Dedicata 159 (2012), 373–387. MR 2944538.
-
M. E. Fels and A. G. Renner, Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four, Canad. J. Math. 58 (2006), no. 2, 282–311. MR 2209280.
-
P. M. Gadea and J. A. Oubiña, Homogeneous Lorentzian structures on the oscillator groups, Arch. Math. (Basel) 73 (1999), no. 4, 311–320. MR 1710084.
-
E. García-Río, P. B. Gilkey, and S. Nikčević, Homogeneity of Lorentzian three-manifolds with recurrent curvature, Math. Nachr. 287 (2014), no. 1, 32–47. MR 3153924.
-
A. R. Gover and P. Nurowski, Obstructions to conformally Einstein metrics in $n$ dimensions, J. Geom. Phys. 56 (2006), no. 3, 450–484. MR 2171895.
-
C. N. Kozameh, E. T. Newman, and K. P. Tod, Conformal Einstein spaces, Gen. Relativity Gravitation 17 (1985), no. 4, 343–352. MR 0788800.
-
W. Kühnel and H.-B. Rademacher, Conformal transformations of pseudo-Riemannian manifolds, in Recent Developments in Pseudo-Riemannian Geometry, 261–298, ESI Lect. Math. Phys, Eur. Math. Soc., Zürich, 2008. MR 2436234.
-
W. Kühnel and H.-B. Rademacher, Conformally Einstein spaces revisited, in Pure and Applied Differential Geometry PADGE 2012, 161–167, Shaker Verlag, Aachen, 2013.
-
B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023.
-
F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Note Series, 83, Cambridge Univ. Press, Cambridge, 1983. MR 0712664.
|