Revista de la
Unión Matemática Argentina
Characterization of essential spectra by quasi-compact perturbations
Faiçal Abdmouleh, Hamadi Chaâben, and Ines Walha

Volume 65, no. 2 (2023), pp. 229–244    

Published online: October 23, 2023

https://doi.org/10.33044/revuma.2771

Download PDF

Abstract

We are interested in the concept of quasi-compact operators allowing us to provide some advances on the theory of operators acting in Banach spaces. More precisely, our main objective is to exhibit the importance of the use of this notion to outline a new approach in the analysis of the stability problems of upper and lower semi-Fredholm, upper and lower semi-Weyl, and upper and lower semi-Browder operators, and to provide a fine description and characterization of some Browder's essential spectra involving this kind of operators.

References

  1. F. Abdmouleh and I. Walha, Characterization and stability of the essential spectrum based on measures of polynomially non-strict singularity operators, Indag. Math. (N.S.) 26 no. 3 (2015), 455–467.  DOI  MR  Zbl
  2. F. Abdmouleh and I. Walha, Measure of non strict singularity of Schechter essential spectrum of two bounded operators and application, Bull. Iranian Math. Soc. 43 no. 5 (2017), 1543–1558.  MR  Zbl
  3. P. Aiena, Fredholm and Local Spectral Theory, With Applications to Multipliers, Kluwer, Dordrecht, 2004.  MR  Zbl
  4. A. Brunel and D. Revuz, Quelques applications probabilistes de la quasi-compacité, Ann. Inst. H. Poincaré Sect. B (N.S.) 10 (1974), 301–337.  MR  Zbl
  5. S. R. Caradus, Operators with finite ascent and descent, Pacific J. Math. 18 (1966), 437–449.  MR  Zbl Available at http://projecteuclid.org/euclid.pjm/1102994125.
  6. S. Charfi and I. Walha, On relative essential spectra of block operator matrices and application, Bull. Korean Math. Soc. 53 no. 3 (2016), 681–698.  DOI  MR  Zbl
  7. L. Chen and W. Su, A note on Weyl-type theorems and restrictions, Ann. Funct. Anal. 8 no. 2 (2017), 190–198.  DOI  MR  Zbl
  8. M. A. Golʹdman and S. N. Kračkovskiĭ, Behavior of the space of zeros with a finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221 no. 13 (1975), 532–534, English translation in Sov. Math., Dokl. 16 (1975), 370–373.  MR  Zbl
  9. S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 no. 1 (1978), 79–80.  DOI  MR  Zbl
  10. R. Harte, Invertibility and Singularity for Bounded Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics 109, Marcel Dekker, New York, 1988.  MR  Zbl
  11. H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics 1766, Springer-Verlag, Berlin, 2001.  DOI  MR  Zbl
  12. M. A. Kaashoek, Ascent, descent, nullity and defect: A note on a paper by A. E. Taylor, Math. Ann. 172 (1967), 105–115.  DOI  MR  Zbl
  13. M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35–47.  DOI  MR  Zbl
  14. T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften 132, Springer-Verlag, New York, 1966.  MR  Zbl
  15. U. A. Koumba, On Riesz Operators, Ph.D. thesis, University of Johannesburg, 2014. Available at https://hdl.handle.net/10210/13695.
  16. N. Kryloff and N. Bogoliouboff, Les propriétés ergodiques des suites des probabilités en chaîne, C. R. Acad. Sci., Paris 204 (1937), 1454–1456.  Zbl
  17. M. Lin, On quasi-compact Markov operators, Ann. Probability 2 (1974), 464–475.  DOI  MR  Zbl
  18. J. Martínez and J. M. Mazón, Quasi-compactness of dominated positive operators and $C_0$-semigroups, Math. Z. 207 no. 1 (1991), 109–120.  DOI  MR  Zbl
  19. V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications 139, Birkhäuser Verlag, Basel, 2003.  DOI  MR  Zbl
  20. V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 no. 2 (1986), 193–198.  DOI  MR  Zbl
  21. V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 no. 2 (1997), 131–137.  DOI  MR  Zbl
  22. M. Schechter, Principles of Functional Analysis, second ed., Graduate Studies in Mathematics 36, American Mathematical Society, Providence, RI, 2002.  DOI  MR  Zbl
  23. R. F. Taylor, Invariant Subspaces in Hilbert and Normed Spaces, Ph.D. thesis, California Institute of Technology, 1968.  DOI
  24. T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 no. 2 (1987), 137–146.  MR  Zbl