Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Characterization of essential spectra by quasi-compact perturbations
Faiçal Abdmouleh, Hamadi Chaâben, and Ines Walha
Volume 65, no. 2
(2023),
pp. 229–244
Published online: October 23, 2023
https://doi.org/10.33044/revuma.2771
Download PDF
Abstract
We are interested in the concept of quasi-compact operators allowing us to provide some
advances on the theory of operators acting in Banach spaces. More precisely, our main
objective is to exhibit the importance of the use of this notion to outline a new approach
in the analysis of the stability problems of upper and lower semi-Fredholm, upper and
lower semi-Weyl, and upper and lower semi-Browder operators, and to provide a fine
description and characterization of some Browder's essential spectra involving this kind
of operators.
References
-
F. Abdmouleh and I. Walha, Characterization and stability of the essential spectrum based on measures of polynomially non-strict singularity operators, Indag. Math. (N.S.) 26 no. 3 (2015), 455–467. DOI MR Zbl
-
F. Abdmouleh and I. Walha, Measure of non strict singularity of Schechter essential spectrum of two bounded operators and application, Bull. Iranian Math. Soc. 43 no. 5 (2017), 1543–1558. MR Zbl
-
P. Aiena, Fredholm and Local Spectral Theory, With Applications to Multipliers, Kluwer, Dordrecht, 2004. MR Zbl
-
A. Brunel and D. Revuz, Quelques applications probabilistes de la quasi-compacité, Ann. Inst. H. Poincaré Sect. B (N.S.) 10 (1974), 301–337. MR Zbl
-
S. R. Caradus, Operators with finite ascent and descent, Pacific J. Math. 18 (1966), 437–449. MR Zbl Available at http://projecteuclid.org/euclid.pjm/1102994125.
-
S. Charfi and I. Walha, On relative essential spectra of block operator matrices and application, Bull. Korean Math. Soc. 53 no. 3 (2016), 681–698. DOI MR Zbl
-
L. Chen and W. Su, A note on Weyl-type theorems and restrictions, Ann. Funct. Anal. 8 no. 2 (2017), 190–198. DOI MR Zbl
-
M. A. Golʹdman and S. N. Kračkovskiĭ, Behavior of the space of zeros with a finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221 no. 13 (1975), 532–534, English translation in Sov. Math., Dokl. 16 (1975), 370–373. MR Zbl
-
S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 no. 1 (1978), 79–80. DOI MR Zbl
-
R. Harte, Invertibility and Singularity for Bounded Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics 109, Marcel Dekker, New York, 1988. MR Zbl
-
H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics 1766, Springer-Verlag, Berlin, 2001. DOI MR Zbl
-
M. A. Kaashoek, Ascent, descent, nullity and defect: A note on a paper by A. E. Taylor, Math. Ann. 172 (1967), 105–115. DOI MR Zbl
-
M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35–47. DOI MR Zbl
-
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften 132, Springer-Verlag, New York, 1966. MR Zbl
-
U. A. Koumba, On Riesz Operators, Ph.D. thesis, University of Johannesburg, 2014. Available at https://hdl.handle.net/10210/13695.
-
N. Kryloff and N. Bogoliouboff, Les propriétés ergodiques des suites des probabilités en chaîne, C. R. Acad. Sci., Paris 204 (1937), 1454–1456. Zbl
-
M. Lin, On quasi-compact Markov operators, Ann. Probability 2 (1974), 464–475. DOI MR Zbl
-
J. Martínez and J. M. Mazón, Quasi-compactness of dominated positive operators and $C_0$-semigroups, Math. Z. 207 no. 1 (1991), 109–120. DOI MR Zbl
-
V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications 139, Birkhäuser Verlag, Basel, 2003. DOI MR Zbl
-
V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 no. 2 (1986), 193–198. DOI MR Zbl
-
V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 no. 2 (1997), 131–137. DOI MR Zbl
-
M. Schechter, Principles of Functional Analysis, second ed., Graduate Studies in Mathematics 36, American Mathematical Society, Providence, RI, 2002. DOI MR Zbl
-
R. F. Taylor, Invariant Subspaces in Hilbert and Normed Spaces, Ph.D. thesis, California Institute of Technology, 1968. DOI
-
T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 no. 2 (1987), 137–146. MR Zbl
|