Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Parallel skew-symmetric tensors on 4-dimensional metric Lie algebras
Andrea C. Herrera
Volume 65, no. 2
(2023),
pp. 295–311
Published online: November 7, 2023
https://doi.org/10.33044/revuma.2451
Download PDF
Abstract
We give a complete classification, up to isometric isomorphism and scaling, of
4-dimensional metric Lie algebras $(\mathfrak{g},\langle\cdot,\cdot\rangle)$ that admit a
non-zero parallel skew-symmetric endomorphism. In particular, we distinguish those metric
Lie algebras that admit such an endomorphism which is not a multiple of a complex
structure, and for each of them we obtain the de Rham decomposition of the associated
simply connected Lie group with the corresponding left invariant metric. On the other
hand, we find that the associated simply connected Lie group is irreducible as a
Riemannian manifold for those metric Lie algebras where each parallel skew-symmetric
endomorphism is a multiple of a complex structure.
References
-
A. Andrada, M. L. Barberis, I. G. Dotti, and G. P. Ovando, Product structures on four dimensional solvable Lie algebras, Homology Homotopy Appl. 7 no. 1 (2005), 9–37. MR Zbl Available at http://projecteuclid.org/euclid.hha/1139839504.
-
A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10, Springer-Verlag, Berlin, 1987. DOI MR Zbl
-
A. Fino, Almost Kähler 4-dimensional Lie groups with $J$-invariant Ricci tensor, Differential Geom. Appl. 23 no. 1 (2005), 26–37. DOI MR Zbl
-
A. C. Herrera, Estructuras Killing-Yano invariantes en variedades homogéneas, Ph.D. thesis, Universidad Nacional de Córdoba, Argentina, 2018. Available at http://hdl.handle.net/11086/6554.
-
G. R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309–349. MR Zbl Available at http://projecteuclid.org/euclid.jdg/1214429056.
-
G. P. Ovando, Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory 16 no. 2 (2006), 371–391. MR Zbl
-
P. Petersen, Riemannian Geometry, third ed., Graduate Texts in Mathematics 171, Springer, Cham, 2016. DOI MR Zbl
-
C. T. C. Wall, Geometries and geometric structures in real dimension $4$ and complex dimension $2$, in Geometry and Topology (College Park, Md., 1983/84), Lecture Notes in Math. 1167, Springer, Berlin, 1985, pp. 268–292. DOI MR Zbl
-
C. T. C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25 no. 2 (1986), 119–153. DOI MR Zbl
|