Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The $r$-dynamic edge coloring of a closed helm graph
Raúl M. Falcón, Mathiyazhagan Venkatachalam, Sathasivam Gowri, and Gnanasekaran Nandini
Volume 65, no. 2
(2023),
pp. 331–346
Published online: November 22, 2023
https://doi.org/10.33044/revuma.2669
Download PDF
Abstract
As a natural generalization of the classical coloring problem in graph theory, the dynamic
coloring problem deals with the existence of a proper coloring $c$ of a graph so that
$|c(N(v))| \geq \min\{r, d(v)\}$ for every vertex $v$. In this paper, we obtain the
$r$-dynamic edge chromatic number of any given closed helm graph for any positive integer
$r$. This coincides with the $r$-dynamic chromatic number of the line graph of a closed
helm graph.
References
-
A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, Discrete Math. 312 no. 17 (2012), 2579–2583. DOI MR Zbl
-
S. Akbari, M. Ghanbari, and S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math. 157 no. 14 (2009), 3005–3007. DOI MR Zbl
-
S. Akbari, M. Ghanbari, and S. Jahanbekam, On the dynamic chromatic number of graphs, in Combinatorics and Graphs, Contemp. Math. 531, Amer. Math. Soc., Providence, RI, 2010, pp. 11–18. DOI MR Zbl
-
M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 no. 2-3 (2011), 152–156. DOI MR Zbl
-
M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 no. 15 (2012), 2098–2103. DOI MR Zbl
-
T. Deepa, R. M. Falcón, and M. Venkatachalam, On the $r$-dynamic coloring of the direct product of a path with either a complete graph or a wheel graph, AIMS Math. 6 no. 2 (2021), 1470–1496. DOI MR Zbl
-
T. Deepa, M. Venkatachalam, and R. M. Falcón, On the $r$-dynamic coloring of the direct product of a path with either a path or a cycle, AIMS Math. 5 no. 6 (2020), 6496–6520. DOI MR Zbl
-
T. Deepa and M. Venkatachalam, On $r$-dynamic coloring of the total graphs of gear graphs, Appl. Math. E-Notes 18 (2018), 69–81. MR Zbl Available at https://www.math.nthu.edu.tw/~amen/2018/AMEN-170730.pdf.
-
H. Furmańczyk, J. Vernold Vivin, and N. Mohanapriya, $r$-dynamic chromatic number of some line graphs, Indian J. Pure Appl. Math. 49 no. 4 (2018), 591–600. DOI MR Zbl
-
F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969. MR Zbl
-
S. Jahanbekam, J. Kim, S. O, and D. B. West, On $r$-dynamic coloring of graphs, Discrete Appl. Math. 206 (2016), 65–72. DOI MR Zbl
-
R. Kang, T. Müller, and D. B. West, On $r$-dynamic coloring of grids, Discrete Appl. Math. 186 (2015), 286–290. DOI MR Zbl
-
H.-J. Lai, B. Montgomery, and H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003), 193–201. MR Zbl
-
X. Li and W. Zhou, The 2nd-order conditional 3-coloring of claw-free graphs, Theoret. Comput. Sci. 396 no. 1-3 (2008), 151–157. DOI MR Zbl
-
S. Loeb, T. Mahoney, B. Reiniger, and J. Wise, Dynamic coloring parameters for graphs with given genus, Discrete Appl. Math. 235 (2018), 129–141. DOI MR Zbl
-
I. N. Maylisa, D. Dafik, and S. Setiawani, Keterampilan berpikir tingkat tinggi dalam pewarnaan sisi $r$-dinamis pada graf khusus, Kadikma 6 no. 3 (2015), 132–141. Available at https://jurnal.unej.ac.id/index.php/kadikma/article/view/5218.
-
D. E. W. Meganingtyas, Analisis pewarnaan $r$-dinamis pada graf-graf khusus, Master's thesis, Universitas Jember, Indonesia, 2015. Available at https://repository.unej.ac.id/handle/123456789/73165.
-
L. D. Minarti, D. Dafik, S. Setiawani, S. Slamin, and A. Fatahillah, Pewarnaan sisi $r$-dinamis pada graf hasil operasi amalgamasi titik keluarga graf pohon dan kaitannya dengan keterampilan berpikir tingkat tinggi, Saintifika 21 no. 2 (2019), 15–22. Available at https://jurnal.unej.ac.id/index.php/STF/article/view/13561.
-
N. Mohanapriya, V. J. Vernold, and M. Venkatachalam, On dynamic coloring of fan graphs, Int. J. Pure Appl. Math. 106 no. 8 (2016), 169–174. Available at https://acadpubl.eu/jsi/2016-106-6-7-8/2016-106-8/20/index.html.
-
N. Mohanapriya, J. Vernold Vivin, and M. Venkatachalam, $\delta$-dynamic chromatic number of Helm graph families, Cogent Math. 3 (2016), Art. ID 1178411, 4 pp. DOI MR Zbl
-
B. Montgomery, Dynamic coloring of graphs, Ph.D. thesis, West Virginia University, 2001. DOI MR
-
G. Nandini, M. Venkatachalam, and R. M. Falcón, On the $r$-dynamic coloring of subdivision-edge coronas of a path, AIMS Math. 5 no. 5 (2020), 4546–4562. DOI MR Zbl
-
G. Nandini, M. Venkatachalam, and S. Gowri, On $r$-dynamic coloring of the family of bistar graphs, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 no. 1 (2019), 923–928. DOI MR Zbl
-
J. V. Vivin, N. Mohanapriya, J. Kok, and M. Venkatachalam, On dynamic coloring of certain cycle-related graphs, Arab. J. Math. (Springer) 9 no. 1 (2020), 213–221. DOI MR Zbl
|