Revista de la
Unión Matemática Argentina
Duality for infinite-dimensional braided bialgebras and their (co)modules
Elmar Wagner

Volume 65, no. 2 (2023), pp. 425–467    

Published online: December 27, 2023

https://doi.org/10.33044/revuma.2956

Download PDF

Abstract

The paper presents a detailed description of duality for braided algebras, coalgebras, bialgebras, Hopf algebras, and their modules and comodules in the infinite setting. Assuming that the dual objects exist, it is shown how a given braiding induces compatible braidings for the dual objects, and how actions (resp., coactions) can be turned into coactions (resp., actions) of the dual coalgebra (resp., algebra), with an emphasis on braided bialgebras and their braided (co)module algebras. Examples are provided by considering these structures in a graded (or filtered) setting, where each degree is finite-dimensional.

References

  1. N. Andruskiewitsch, An introduction to Nichols algebras, in Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, {Mathematical Physics Studies}, Springer, Cham, 2017, pp. 135–195.  DOI  MR  Zbl
  2. N. Andruskiewitsch, I. Angiono, and I. Heckenberger, On finite GK-dimensional Nichols algebras of diagonal type, in Tensor Categories and Hopf Algebras, Contemp. Math. 728, Amer. Math. Soc., Providence, RI, 2019, pp. 1–23.  DOI  MR  Zbl
  3. N. Andruskiewitsch, I. Angiono, and I. Heckenberger, On Nichols algebras of infinite rank with finite Gelfand-Kirillov dimension, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 no. 1 (2020), 81–101.  DOI  MR  Zbl
  4. N. Andruskiewitsch, I. Angiono, and I. Heckenberger, On finite GK-dimensional Nichols algebras over abelian groups, Mem. Amer. Math. Soc. 271 no. 1329 (2021).  DOI  MR  Zbl
  5. N. Andruskiewitsch, G. Carnovale, and G. A. García, Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type I. Non-semisimple classes in $\mathbf{PSL}_n(q)$, J. Algebra 442 (2015), 36–65.  DOI  MR  Zbl
  6. N. Andruskiewitsch and F. Fantino, New techniques for pointed Hopf algebras, in New Developments in Lie Theory and Geometry, Contemp. Math. 491, Amer. Math. Soc., Providence, RI, 2009, pp. 323–348.  DOI  MR  Zbl
  7. N. Andruskiewitsch and M. Graña, Braided Hopf algebras over non-abelian finite groups, Bol. Acad. Nac. Cienc. (Córdoba) 63 (1999), 45–78.  MR  Zbl
  8. N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider, The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 no. 6 (2010), 1493–1547.  DOI  MR  Zbl
  9. N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras, in New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 1–68.  MR  Zbl Available at https://web.archive.org/web/20231206184128/https://library.slmath.org/books/Book43/files/andrus.pdf.
  10. M. Da Rocha, J. A. Guccione, and J. J. Guccione, Braided module and comodule algebras, Galois extensions and elements of trace 1, J. Algebra 307 no. 2 (2007), 727–768.  DOI  MR  Zbl
  11. J. A. Guccione and J. J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 no. 1 (2003), 54–101.  DOI  MR  Zbl
  12. J. A. Guccione, J. J. Guccione, and C. Valqui, Universal deformation formulas and braided module algebras, J. Algebra 330 (2011), 263–297.  DOI  MR  Zbl
  13. X.-j. Guo and S.-c. Zhang, Integrals of braided Hopf algebras, J. Math. Res. Exposition 26 no. 4 (2006), 649–658.  MR  Zbl
  14. I. Heckenberger and H.-J. Schneider, Yetter-Drinfeld modules over bosonizations of dually paired Hopf algebras, Adv. Math. 244 (2013), 354–394.  DOI  MR  Zbl
  15. V. K. Kharchenko, A quantum analog of the Poincaré-Birkhoff-Witt theorem, Algebra and Logic 38 no. 4 (1999), 259–276.  DOI  MR  Zbl
  16. V. K. Kharchenko, Quantum Lie Theory, Lecture Notes in Mathematics 2150, Springer, Cham, 2015.  DOI  MR  Zbl
  17. A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, {Texts and Monographs in Physics}, Springer-Verlag, Berlin, 1997.  DOI  MR  Zbl
  18. V. V. Lyubashenko, Hopf algebras and vector symmetries, Russ. Math. Surv. 41 no. 5 (1986), 153–154.  DOI  MR  Zbl
  19. S. Majid, Braided groups and algebraic quantum field theories, Lett. Math. Phys. 22 no. 3 (1991), 167–175.  DOI  MR  Zbl
  20. S. Majid, Examples of braided groups and braided matrices, J. Math. Phys. 32 no. 12 (1991), 3246–3253.  DOI  MR  Zbl
  21. S. Majid, Braided groups and duals of monoidal categories, in Category Theory 1991 (Montreal, PQ, 1991), CMS Conf. Proc. 13, Amer. Math. Soc., Providence, RI, 1992, pp. 329–343.  MR  Zbl
  22. S. Majid, Braided groups, J. Pure Appl. Algebra 86 no. 2 (1993), 187–221.  DOI  MR  Zbl
  23. S. Majid, Quantum and braided linear algebra, J. Math. Phys. 34 no. 3 (1993), 1176–1196.  DOI  MR  Zbl
  24. S. Majid, Algebras and Hopf algebras in braided categories, in Advances in Hopf Algebras (Chicago, IL, 1992), Lecture Notes in Pure and Appl. Math. 158, Dekker, New York, 1994, pp. 55–105.  MR  Zbl
  25. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.  DOI  MR  Zbl
  26. S. Majid, Introduction to braided geometry and $q$-Minkowski space, in Quantum Groups and Their Applications in Physics (Varenna, 1994), Proc. Internat. School Phys. Enrico Fermi 127, IOS, Amsterdam, 1996, pp. 267–345.  DOI  MR  Zbl
  27. C. Năstăsescu and B. Torrecillas, Graded coalgebras, Tsukuba J. Math. 17 no. 2 (1993), 461–479.  DOI  MR  Zbl
  28. M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 no. 2 (1998), 399–416.  DOI  MR  Zbl
  29. M. Takeuchi, Finite Hopf algebras in braided tensor categories, J. Pure Appl. Algebra 138 no. 1 (1999), 59–82.  DOI  MR  Zbl
  30. M. Takeuchi, Survey of braided Hopf algebras, in New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 301–323.  MR  Zbl
  31. Y. Xu, S. Zhang, and J. Cheng, Duality theorem and Hom functor in braided tensor categories, Int. J. Mod. Math. 4 no. 2 (2009), 109–134.  MR  Zbl
  32. S. Zhang and Y. Han, Duality theorems for infinite braided Hopf algebras, 2008. arXiv:math/0309007v6 [math.QA].