Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Poincaré duality for Hopf algebroids
Sophie Chemla
Volume 67, no. 1
(2024),
pp. 123–136
Published online: April 5, 2024
https://doi.org/10.33044/revuma.2832
Download PDF
Abstract
We prove a twisted Poincaré duality for (full) Hopf algebroids with bijective antipode. As
an application, we recover the Hochschild twisted Poincaré duality of van den Bergh. We
also get a Poisson twisted Poincaré duality, which was already stated for oriented Poisson
manifolds by Chen et al.
References
-
M. van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 no. 5 (1998), 1345–1348. DOI MR Zbl
-
G. Böhm, Hopf algebroids, in Handbook of algebra, vol. 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 173–235. DOI MR Zbl
-
G. Böhm and K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, J. Algebra 274 no. 2 (2004), 708–750. DOI MR Zbl
-
A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics 2, Academic Press, Boston, MA, 1987. MR Zbl
-
J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 no. 1 (1988), 93–114. MR Zbl Available at http://projecteuclid.org/euclid.jdg/1214442161.
-
S. Chemla, Poincaré duality for $k$-$A$ Lie superalgebras, Bull. Soc. Math. France 122 no. 3 (1994), 371–397. MR Zbl Available at http://www.numdam.org/item?id=BSMF_1994__122_3_371_0.
-
S. Chemla, A duality property for complex Lie algebroids, Math. Z. 232 no. 2 (1999), 367–388. DOI MR Zbl
-
S. Chemla, F. Gavarini, and N. Kowalzig, Duality features of left Hopf algebroids, Algebr. Represent. Theory 19 no. 4 (2016), 913–941. DOI MR Zbl
-
X. Chen, L. Liu, S. Yu, and J. Zeng, Batalin-Vilkovisky algebra structure on Poisson manifolds with diagonalizable modular symmetry, J. Geom. Phys. 189 (2023), Paper No. 104829, 22 pp. DOI MR Zbl
-
S. Evens, J.-H. Lu, and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 no. 200 (1999), 417–436. DOI MR Zbl
-
A. Fröhlich, The Picard group of noncommutative rings, in particular of orders, Trans. Amer. Math. Soc. 180 (1973), 1–45. DOI MR Zbl
-
J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57–113. DOI MR Zbl
-
N. Jacobson, Basic algebra. II, W. H. Freeman, San Francisco, CA, 1980. MR Zbl
-
M. Kashiwara, $D$-modules and microlocal calculus, Translations of Mathematical Monographs 217, American Mathematical Society, Providence, RI, 2003. DOI MR Zbl
-
Y. Kosmann-Schwarzbach, Poisson manifolds, Lie algebroids, modular classes: a survey, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 005. DOI MR Zbl
-
J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque no. S131 (1985), 257–271. MR Zbl Available at http://www.numdam.org/item/AST_1985__S131__257_0/.
-
N. Kowalzig, Hopf algebroids and their cyclic theory, Ph.D. thesis, Utrecht University, Utrecht, Netherlands, 2009. Available at https://dspace.library.uu.nl/handle/1874/34171.
-
N. Kowalzig and U. Krähmer, Duality and products in algebraic (co)homology theories, J. Algebra 323 no. 7 (2010), 2063–2081. DOI MR Zbl
-
N. Kowalzig and H. Posthuma, The cyclic theory of Hopf algebroids, J. Noncommut. Geom. 5 no. 3 (2011), 423–476. DOI MR Zbl
-
S. Launois and L. Richard, Twisted Poincaré duality for some quadratic Poisson algebras, Lett. Math. Phys. 79 no. 2 (2007), 161–174. DOI MR Zbl
-
J. Luo, S.-Q. Wang, and Q.-S. Wu, Twisted Poincaré duality between Poisson homology and Poisson cohomology, J. Algebra 442 (2015), 484–505. DOI MR Zbl
-
K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 no. 2 (1994), 415–452. DOI MR Zbl
-
G. S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222. DOI MR Zbl
-
P. Schauenburg, Duals and doubles of quantum groupoids ($\times_R$-Hopf algebras), in New trends in Hopf algebra theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 273–299. DOI MR Zbl
-
M. Takeuchi, Groups of algebras over $A\otimes \overline A$, J. Math. Soc. Japan 29 no. 3 (1977), 459–492. DOI MR Zbl
-
P. Xu, Quantum groupoids, Comm. Math. Phys. 216 no. 3 (2001), 539–581. DOI MR Zbl
-
A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 no. 1 (1992), 41–84. DOI MR Zbl
-
C. Zhu, Twisted Poincaré duality for Poisson homology and cohomology of affine Poisson algebras, Proc. Amer. Math. Soc. 143 no. 5 (2015), 1957–1967. DOI MR Zbl
|