Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Gorenstein properties of split-by-nilpotent extension algebras
Pamela Suarez
Volume 67, no. 1
(2024),
pp. 137–144
Published online: April 10, 2024
https://doi.org/10.33044/revuma.3303
Download PDF
Abstract
Let $A$ be a finite-dimensional $k$-algebra over an algebraically closed field $k$. In
this note, we study the Gorenstein homological properties of a split-by-nilpotent
extension algebra. Let $R$ be a split-by-nilpotent extension of $A$. We provide sufficient
conditions to ensure when a Gorenstein-projective module over $A$ induces a similar
structure over $R$. We also study when a Gorenstein-projective $R$-module induces a
Gorenstein-projective $A$-module. Moreover, we study the relationship between the
Gorensteinness of $A$ and $R$.
References
-
I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 no. 5 (1998), 1547–1555. DOI MR Zbl
-
I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006. DOI MR Zbl
-
M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. no. 94 (1969). DOI MR Zbl
-
L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 no. 2 (2002), 393–440. DOI MR Zbl
-
A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 no. 883 (2007). DOI MR Zbl
-
X.-W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory 12 no. 2-5 (2009), 181–191. DOI MR Zbl
-
X.-W. Chen, D. Shen, and G. Zhou, The Gorenstein-projective modules over a monomial algebra, Proc. Roy. Soc. Edinburgh Sect. A 148 no. 6 (2018), 1115–1134. DOI MR Zbl
-
E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 no. 4 (1995), 611–633. DOI MR Zbl
-
E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin, 2000. DOI MR Zbl
-
C. Geiss and I. Reiten, Gentle algebras are Gorenstein, in Representations of algebras and related topics, Fields Inst. Commun. 45, Amer. Math. Soc., Providence, RI, 2005, pp. 129–133. MR Zbl
-
D. Happel, On Gorenstein algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math. 95, Birkhäuser, Basel, 1991, pp. 389–404. DOI MR Zbl
-
B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 no. 1 (2007), 123–151. DOI MR Zbl
-
M. Lu, Gorenstein properties of simple gluing algebras, Algebr. Represent. Theory 22 no. 3 (2019), 517–543. DOI MR Zbl
-
R. Marczinzik, On stable modules that are not Gorenstein projective, 2017. arXiv:1709.01132v3 [math.RT].
-
C. M. Ringel, The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 (2013), 241–261. DOI MR Zbl
-
C. M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory 14 no. 1 (2020), 1–36. DOI MR Zbl
-
P. Suarez, Split-by-nilpotent extensions and support $\tau$-tilting modules, Algebr. Represent. Theory 23 no. 6 (2020), 2295–2313. DOI MR Zbl
-
B.-L. Xiong and P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl. 11 no. 4 (2012), 1250066, 14 pp. DOI MR Zbl
|