Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the Eneström–Kakeya theorem and its various forms in the quaternionic setting
Abdullah Mir
Volume 67, no. 1
(2024),
pp. 197–211
Published online: April 24, 2024
https://doi.org/10.33044/revuma.3504
Download PDF
Abstract
We study the extensions of the classical Eneström–Kakeya theorem and its various
generalizations regarding the distribution of zeros of polynomials from the complex to the
quaternionic setting. We aim to build upon the previous work by various authors and derive
zero-free regions of some special regular functions of a quaternionic variable with
restricted coefficients, namely quaternionic coefficients whose real and imaginary
components or moduli of the coefficients satisfy suitable inequalities. The obtained
results for this subclass of polynomials and slice regular functions produce
generalizations of a number of results known in the literature on this subject.
References
-
A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. Appl. 75 no. 2 (1980), 495–502. DOI MR Zbl
-
N. Carney, R. Gardner, R. Keaton, and A. Powers, The Eneström-Kakeya theorem for polynomials of a quaternionic variable, J. Approx. Theory 250 (2020), 105325, 10 pp. DOI MR Zbl
-
K. K. Dewan and M. Bidkham, On the Eneström-Kakeya theorem, J. Math. Anal. Appl. 180 no. 1 (1993), 29–36. DOI MR Zbl
-
S. G. Gal and I. Sabadini, On Bernstein and Erdős-Lax's inequalities for quaternionic polynomials, C. R. Math. Acad. Sci. Paris 353 no. 1 (2015), 5–9. DOI MR Zbl
-
R. B. Gardner and N. K. Govil, Eneström-Kakeya theorem and some of its generalizations, in Current topics in pure and computational complex analysis, Trends in Mathematics, Birkhäuser/Springer, New Delhi, 2014, pp. 171–199. DOI MR Zbl
-
R. B. Gardner and M. A. Taylor, Generalization of an Eneström-Kakeya type theorem to the quaternions, Armen. J. Math. 14 (2022), Paper No. 9, 8 pp. DOI MR Zbl
-
G. Gentili and C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J. 56 no. 3 (2008), 655–667. DOI MR Zbl
-
G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 no. 1 (2007), 279–301. DOI MR Zbl
-
G. Gentili and D. C. Struppa, On the multiplicity of zeroes of polynomials with quaternionic coefficients, Milan J. Math. 76 (2008), 15–25. DOI MR Zbl
-
A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull. 10 (1967), 53–63. DOI MR Zbl
-
T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics 131, Springer-Verlag, New York, 1991. DOI MR Zbl
-
M. Marden, Geometry of polynomials, second ed., Mathematical Surveys 3, American Mathematical Society, Providence, RI, 1966. MR Zbl
-
G. V. Milovanović, D. S. Mitrinović, and T. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, River Edge, NJ, 1994. DOI MR Zbl
-
I. Niven, Equations in quaternions, Amer. Math. Monthly 48 (1941), 654–661. DOI MR Zbl
-
I. Niven, The roots of a quaternion, Amer. Math. Monthly 49 (1942), 386–388. DOI MR Zbl
-
R. Serôdio and L.-S. Siu, Zeros of quaternion polynomials, Appl. Math. Lett. 14 no. 2 (2001), 237–239. DOI MR Zbl
-
A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 no. 2 (1979), 199–225. DOI MR Zbl
-
D. Tripathi, A note on Eneström-Kakeya theorem for a polynomial with quaternionic variable, Arab. J. Math. 9 no. 3 (2020), 707–714. DOI MR Zbl
|