Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the planarity, genus, and crosscap of the weakly zero-divisor graph of commutative rings
Nadeem ur Rehman, Mohd Nazim, and Shabir Ahmad Mir
Volume 67, no. 1
(2024),
pp. 213–227
Published online: April 30, 2024
https://doi.org/10.33044/revuma.2837
Download PDF
Abstract
Let $R$ be a commutative ring and $Z(R)$ its zero-divisors set. The weakly zero-divisor
graph of $R$, denoted by $W\Gamma(R)$, is an undirected graph with
the nonzero zero-divisors $Z(R)^*$ as vertex set and two distinct
vertices $x$ and $y$ are adjacent if and
only if there exist $a \in \mathrm{Ann}(x)$ and $b \in \mathrm{Ann}(y)$ such that $ab =
0$. In this paper, we characterize finite rings $R$ for which the weakly zero-divisor
graph $W\Gamma(R)$ belongs to some well-known families of graphs. Further, we classify the
finite rings $R$ for which $W\Gamma(R)$ is planar, toroidal or double toroidal. Finally,
we classify the finite rings $R$ for which the graph $W\Gamma(R)$ has crosscap at most
two.
References
-
S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 no. 2 (2004), 847–855. DOI MR Zbl
-
D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 no. 2 (1993), 500–514. DOI MR Zbl
-
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447. DOI MR Zbl
-
T. Asir and K. Mano, Classification of rings with crosscap two class of graphs, Discrete Appl. Math. 265 (2019), 13–21. DOI MR Zbl
-
T. Asir and K. Mano, Classification of non-local rings with genus two zero-divisor graphs, Soft Comput. 24 no. 1 (2020), 237–245, correction ibid. 25, no. 4, 3355–3356 (2021). DOI Zbl
-
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969. MR Zbl
-
I. Beck, Coloring of commutative rings, J. Algebra 116 no. 1 (1988), 208–226. DOI MR Zbl
-
N. Bloomfield and C. Wickham, Local rings with genus two zero divisor graph, Comm. Algebra 38 no. 8 (2010), 2965–2980. DOI MR Zbl
-
H.-J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 319 no. 7 (2008), 2789–2802. DOI MR Zbl
-
F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 no. 2 (2002), 206–214. DOI MR Zbl
-
I. Gitler, E. Reyes, and R. H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 no. 3 (2010), 430–441. DOI MR Zbl
-
B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, New York, 1974. MR Zbl
-
B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001. MR Zbl
-
M. J. Nikmehr, A. Azadi, and R. Nikandish, The weakly zero-divisor graph of a commutative ring, Rev. Un. Mat. Argentina 62 no. 1 (2021), 105–116. DOI MR Zbl
-
S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 no. 4 (2002), 203–211. Zbl
-
H.-J. Wang, Zero-divisor graphs of genus one, J. Algebra 304 no. 2 (2006), 666–678. DOI MR Zbl
-
D. B. West, Introduction to graph theory, 2nd ed., New Delhi: Prentice-Hall of India, 2005. Zbl
-
A. T. White, Graphs, groups and surfaces, North-Holland Mathematics Studies, No. 8, North-Holland, Amsterdam-London; American Elsevier, New York, 1973. MR Zbl
-
C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 no. 2 (2008), 325–345. DOI MR Zbl
|