Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Hermite Besov and Triebel–Lizorkin spaces and applications
Fu Ken Ly and Virginia Naibo
Volume 66, no. 1
(2023),
pp. 243–263
https://doi.org/10.33044/revuma.4360
Download PDF
Abstract
We present an overview of Besov and Triebel–Lizorkin spaces in the Hermite
setting and applications on boundedness properties of Hermite
pseudo-multipliers and fractional Leibniz rules in such spaces. We also
give a new weighted estimate for Hermite multipliers for weights related to
Hermite operators.
References
-
S. Bagchi and R. Garg, On $L^2$-boundedness of pseudo-multipliers associated to the Grushin operator, 2023. arXiv 2111.10098 [math.AP].
-
S. Bagchi and S. Thangavelu, On Hermite pseudo-multipliers, J. Funct. Anal. 268 no. 1 (2015), 140–170. DOI MR Zbl
-
B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232. DOI MR Zbl
-
B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals: weighted estimates for $p=1$, Math. Nachr. 289 no. 11-12 (2016), 1341–1369. DOI MR Zbl
-
B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579. DOI MR Zbl
-
B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci. Math. Sci. 116 no. 3 (2006), 337–360. DOI MR Zbl
-
J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 no. 2 (1981), 209–246. DOI MR Zbl
-
H.-Q. Bui, T. A. Bui, and X. T. Duong, Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications, Forum Math. Sigma 8 (2020), Paper No. e11, 95 pp. DOI MR Zbl
-
T. A. Bui, Hermite pseudo-multipliers on new Besov and Triebel-Lizorkin spaces, J. Approx. Theory 252 (2020), Paper No. 105348, 16 pp. DOI MR Zbl
-
T. A. Bui, T. Q. Bui, and X. T. Duong, Quantitative weighted estimates for some singular integrals related to critical functions, J. Geom. Anal. 31 no. 10 (2021), 10215–10245. DOI MR Zbl
-
T. A. Bui, T. Q. Bui, and X. T. Duong, Quantitative estimates for square functions with new class of weights, Potential Anal. 57 no. 4 (2022), 545–569. DOI MR Zbl
-
T. A. Bui and X. T. Duong, Besov and Triebel-Lizorkin spaces associated to Hermite operators, J. Fourier Anal. Appl. 21 no. 2 (2015), 405–448. DOI MR Zbl
-
T. A. Bui and X. T. Duong, Higher-order Riesz transforms of Hermite operators on new Besov and Triebel-Lizorkin spaces, Constr. Approx. 53 no. 1 (2021), 85–120. DOI MR Zbl
-
T. A. Bui, J. Li, and F. K. Ly, Weighted embeddings for function spaces associated with Hermite expansions, J. Approx. Theory 264 (2021), Paper No. 105534, 25 pp. DOI MR Zbl
-
D. Cardona and M. Ruzhansky, Hörmander condition for pseudo-multipliers associated to the harmonic oscillator, 2018. arXiv 1810.01260 [math.FA].
-
J. Dziubański, Atomic decomposition of $H^p$ spaces associated with some Schrödinger operators, Indiana Univ. Math. J. 47 no. 1 (1998), 75–98. DOI MR Zbl
-
J. Epperson, Triebel-Lizorkin spaces for Hermite expansions, Studia Math. 114 no. 1 (1995), 87–103. DOI MR Zbl
-
J. Epperson, Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124 no. 7 (1996), 2061–2068. DOI MR Zbl
-
J. Epperson, Hermite and Laguerre wave packet expansions, Studia Math. 126 no. 3 (1997), 199–217. DOI MR Zbl
-
M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 no. 4 (1985), 777–799. DOI MR Zbl
-
M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 no. 1 (1990), 34–170. DOI MR Zbl
-
G. Garrigós, E. Harboure, T. Signes, J. L. Torrea, and B. Viviani, A sharp weighted transplantation theorem for Laguerre function expansions, J. Funct. Anal. 244 no. 1 (2007), 247–276. DOI MR Zbl
-
A. G. Georgiadis and M. Nielsen, Pseudodifferential operators on spaces of distributions associated with non-negative self-adjoint operators, J. Fourier Anal. Appl. 23 no. 2 (2017), 344–378. DOI MR Zbl
-
S. Gong, B. Ma, and Z. Fu, A continuous characterization of Triebel-Lizorkin spaces associated with Hermite expansions, J. Funct. Spaces (2015), Art. ID 104897, 11 pp. DOI MR Zbl
-
E. Harboure, J. L. Torrea, and B. E. Viviani, Riesz transforms for Laguerre expansions, Indiana Univ. Math. J. 55 no. 3 (2006), 999–1014. DOI MR Zbl
-
J. Huang, Hardy-Sobolev spaces associated with Hermite expansions and interpolation, Nonlinear Anal. 157 (2017), 104–122. DOI MR Zbl
-
A. K. Lerner, Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers, Math. Res. Lett. 26 no. 2 (2019), 537–556. DOI MR Zbl
-
J. Li, R. Rahm, and B. D. Wick, $A_p$ weights and quantitative estimates in the Schrödinger setting, Math. Z. 293 no. 1-2 (2019), 259–283. DOI MR Zbl
-
F. K. Ly, On the $L^2$ boundedness of pseudo-multipliers for Hermite expansions, 2022. arXiv 2203.09058 [math.CA].
-
F. K. Ly and V. Naibo, Pseudo-multipliers and smooth molecules on Hermite Besov and Hermite Triebel-Lizorkin spaces, J. Fourier Anal. Appl. 27 no. 3 (2021), Paper No. 57, 59 pp. DOI MR Zbl
-
F. K. Ly and V. Naibo, Fractional Leibniz rules associated to bilinear Hermite pseudo-multipliers, Int. Math. Res. Not. IMRN 2023 no. 7 (2023), 5401–5437. DOI MR Zbl
-
G. Mauceri, The Weyl transform and bounded operators on $L^{p}(\mathbf{R}^{n})$, J. Functional Analysis 39 no. 3 (1980), 408–429. DOI MR Zbl
-
Y. Meyer, Remarques sur un théorème de J.-M. Bony, Rend. Circ. Mat. Palermo (2), suppl. 1 (1981), 1–20. MR Zbl
-
B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243–260. DOI MR Zbl
-
B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231–242. DOI MR Zbl
-
B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. DOI MR Zbl
-
P. Petrushev and Y. Xu, Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. Appl. 14 no. 3 (2008), 372–414. DOI MR Zbl
-
T. Runst, Pseudodifferential operators of the “exotic” class $L^0_{1,1}$ in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 no. 1 (1985), 13–28. DOI MR Zbl
-
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993. MR Zbl
-
K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 no. 2 (2003), 443–472. DOI MR Zbl
-
S. Thangavelu, Multipliers for Hermite expansions, Rev. Mat. Iberoamericana 3 no. 1 (1987), 1–24. DOI MR Zbl
-
S. Thangavelu, On regularity of twisted spherical means and special Hermite expansions, Proc. Indian Acad. Sci. Math. Sci. 103 no. 3 (1993), 303–320. DOI MR Zbl
-
S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993. MR Zbl
-
R. H. Torres, Continuity properties of pseudodifferential operators of type $1,1$, Comm. Partial Differential Equations 15 no. 9 (1990), 1313–1328. DOI MR Zbl
-
R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 no. 442 (1991). DOI MR Zbl
-
J. Zhang and D. Yang, Quantitative boundedness of Littlewood-Paley functions on weighted Lebesgue spaces in the Schrödinger setting, J. Math. Anal. Appl. 484 no. 2 (2020), 123731, 26 pp. DOI MR Zbl
|