Revista de la
Unión Matemática Argentina
On an extension of the Newton polygon test for polynomial reducibility
Brahim Boudine

Volume 67, no. 1 (2024), pp. 15–25    

Published online: February 21, 2024

https://doi.org/10.33044/revuma.2842

Download PDF

Abstract

Let $R$ be a commutative local principal ideal ring which is not integral, $f$ a polynomial in $R[x]$ such that $f(0) \neq 0$ and $N(f)$ its Newton polygon. If $N(f)$ contains $r$ sides of different slopes, we show that $f$ has at least $r$ different pure factors in $R[x]$. This generalizes the Newton polygon method over a ring which is not integral.

References

  1. G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119–150.  MR  Zbl Available at https://projecteuclid.org/euclid.nmj/1118764746.
  2. W. C. Brown, Matrices over commutative rings, Monographs and Textbooks in Pure and Applied Mathematics 169, Marcel Dekker, New York, 1993.  MR  Zbl
  3. J. W. S. Cassels, Local fields, London Mathematical Society Student Texts 3, Cambridge University Press, Cambridge, 1986.  DOI  MR  Zbl
  4. M. E. Charkani and B. Boudine, On the integral ideals of $R[X]$ when $R$ is a special principal ideal ring, São Paulo J. Math. Sci. 14 no. 2 (2020), 698–702.  DOI  MR  Zbl
  5. S. D. Cohen, A. Movahhedi, and A. Salinier, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 no. 1-2 (2000), 173–196.  DOI  MR  Zbl
  6. H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 no. 8 (2004), 1728–1744.  DOI  MR  Zbl
  7. D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.  DOI  MR  Zbl
  8. L. El Fadil, Factorization of polynomials over valued fields based on graded polynomials, Math. Slovaca 70 no. 4 (2020), 807–814.  DOI  MR  Zbl
  9. J. von zur Gathen and J. Gerhard, Modern computer algebra, third ed., Cambridge University Press, Cambridge, 2013.  DOI  MR  Zbl
  10. J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 no. 1 (2012), 361–416.  DOI  MR  Zbl
  11. S. K. Khanduja and S. Kumar, On prolongations of valuations via Newton polygons and liftings of polynomials, J. Pure Appl. Algebra 216 no. 12 (2012), 2648–2656.  DOI  MR  Zbl
  12. B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics 28, Marcel Dekker, New York, 1974.  MR  Zbl
  13. Ö. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 no. 1 (1928), 84–117.  DOI  MR  Zbl
  14. C. Rotthaus, Excellent rings, Henselian rings, and the approximation property, Rocky Mountain J. Math. 27 no. 1 (1997), 317–334.  DOI  MR  Zbl