Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On an extension of the Newton polygon test for polynomial reducibility
Brahim Boudine
Volume 67, no. 1
(2024),
pp. 15–25
Published online: February 21, 2024
https://doi.org/10.33044/revuma.2842
Download PDF
Abstract
Let $R$ be a commutative local principal ideal ring which is not integral, $f$ a
polynomial in $R[x]$ such that $f(0) \neq 0$ and $N(f)$ its Newton polygon. If $N(f)$
contains $r$ sides of different slopes, we show that $f$ has at least $r$ different pure
factors in $R[x]$. This generalizes the Newton polygon method over a ring which is not
integral.
References
-
G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119–150. MR Zbl Available at https://projecteuclid.org/euclid.nmj/1118764746.
-
W. C. Brown, Matrices over commutative rings, Monographs and Textbooks in Pure and Applied Mathematics 169, Marcel Dekker, New York, 1993. MR Zbl
-
J. W. S. Cassels, Local fields, London Mathematical Society Student Texts 3, Cambridge University Press, Cambridge, 1986. DOI MR Zbl
-
M. E. Charkani and B. Boudine, On the integral ideals of $R[X]$ when $R$ is a special principal ideal ring, São Paulo J. Math. Sci. 14 no. 2 (2020), 698–702. DOI MR Zbl
-
S. D. Cohen, A. Movahhedi, and A. Salinier, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 no. 1-2 (2000), 173–196. DOI MR Zbl
-
H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 no. 8 (2004), 1728–1744. DOI MR Zbl
-
D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995. DOI MR Zbl
-
L. El Fadil, Factorization of polynomials over valued fields based on graded polynomials, Math. Slovaca 70 no. 4 (2020), 807–814. DOI MR Zbl
-
J. von zur Gathen and J. Gerhard, Modern computer algebra, third ed., Cambridge University Press, Cambridge, 2013. DOI MR Zbl
-
J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 no. 1 (2012), 361–416. DOI MR Zbl
-
S. K. Khanduja and S. Kumar, On prolongations of valuations via Newton polygons and liftings of polynomials, J. Pure Appl. Algebra 216 no. 12 (2012), 2648–2656. DOI MR Zbl
-
B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics 28, Marcel Dekker, New York, 1974. MR Zbl
-
Ö. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 no. 1 (1928), 84–117. DOI MR Zbl
-
C. Rotthaus, Excellent rings, Henselian rings, and the approximation property, Rocky Mountain J. Math. 27 no. 1 (1997), 317–334. DOI MR Zbl
|