Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Genus and book thickness of reduced cozero-divisor graphs of commutative rings
Edward Jesili, Krishnan Selvakumar, and Thirugnanam Tamizh Chelvam
Volume 67, no. 2
(2024),
pp. 455–473
Published online (final version): September 23, 2024
https://doi.org/10.33044/revuma.3906
Download PDF
Abstract
For a commutative ring $R$ with identity, let $\langle a\rangle$ be the principal ideal
generated by $a\in R$. Let $\Omega(R)^*$ be the set of all nonzero proper principal ideals
of $R$. The reduced cozero-divisor graph $\Gamma_r(R)$ of $R$ is the simple undirected
graph whose vertex set is $\Omega(R)^*$ and such that two distinct vertices $\langle
a\rangle$ and $\langle b\rangle$ in $\Omega(R)^\ast$ are adjacent if and only if $\langle
a \rangle\nsubseteq\langle b\rangle$ and $\langle b\rangle\nsubseteq\langle a\rangle$. In
this article, we study certain properties of embeddings of the reduced cozero-divisor
graph of commutative rings. More specifically, we characterize all Artinian nonlocal rings
whose reduced cozero-divisor graph has genus two. Also we find the book thickness of the
reduced cozero-divisor graphs which have genus at most one.
References
-
M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 no. 5 (2011), 753–762. MR Zbl
-
D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, Graphs from rings, Springer, Cham, 2021. DOI MR Zbl
-
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447. DOI MR Zbl
-
D. Archdeacon, Topological graph theory: a survey, Congr. Numer. 115 (1996), 5–54. MR Zbl
-
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969. MR Zbl
-
I. Beck, Coloring of commutative rings, J. Algebra 116 no. 1 (1988), 208–226. DOI MR Zbl
-
M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 no. 4 (2011), 727–739. DOI MR Zbl
-
F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B 27 no. 3 (1979), 320–331. DOI MR Zbl
-
J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier, New York, 1976. MR Zbl
-
I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392. DOI MR Zbl
-
G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 433–438. MR Zbl
-
E. Jesili, K. Selvakumar, and T. Tamizh Chelvam, On the genus of reduced cozero-divisor graph of commutative rings, Soft Comput. 27 (2023), 657–666. DOI
-
S. Kavitha and R. Kala, On the genus of graphs from commutative rings, AKCE Int. J. Graphs Comb. 14 no. 1 (2017), 27–34. DOI MR Zbl
-
B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001. MR Zbl
-
K. Selvakumar, M. Subajini, and M. J. Nikmehr, Finite commutative ring with genus two essential graph, J. Algebra Appl. 17 no. 7 (2018), Paper No. 1850121, 11 pp. DOI MR Zbl
-
F. Shaveisi and R. Nikandish, The nil-graph of ideals of a commutative ring, Bull. Malays. Math. Sci. Soc. 39 suppl. 1 (2016), S3–S11. DOI MR Zbl
-
T. Tamizh Chelvam and T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra 41 no. 1 (2013), 142–153. DOI MR Zbl
-
H.-J. Wang, Zero-divisor graphs of genus one, J. Algebra 304 no. 2 (2006), 666–678. DOI MR Zbl
-
A. T. White, Graphs, groups and surfaces, North-Holland Mathematics Studies, No. 8, North-Holland, Amsterdam-London; American Elsevier, New York, 1973. MR Zbl
-
C. Wickham, Rings whose zero-divisor graphs have positive genus, J. Algebra 321 no. 2 (2009), 377–383. DOI MR Zbl
-
A. Wilkens, J. Cain, and L. Mathewson, Reduced cozero-divisor graphs of commutative rings, Int. J. Algebra 5 no. 17-20 (2011), 935–950. MR Zbl
-
M. Ye and T. Wu, Co-maximal ideal graphs of commutative rings, J. Algebra Appl. 11 no. 6 (2012), Paper No. 1250114, 14 pp. DOI MR Zbl
|