Revista de la
Unión Matemática Argentina
Cluster algebras of type $\mathbb{A}_{n-1}$ through the permutation groups $S_{n}$
Kodjo Essonana Magnani

Volume 68, no. 1 (2025), pp. 55–68    

Published online (final version): February 28, 2025

https://doi.org/10.33044/revuma.3473

Download PDF

Abstract

Flips of triangulations appear in the definition of cluster algebras by Fomin and Zelevinsky. In this article we give an interpretation of mutation in the sense of permutation using triangulations of a convex polygon. We thus establish a link between cluster variables and permutation mutations in the case of cluster algebras of type $\mathbb{A}$.

References

  1. P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters ($A_n$ case), Trans. Amer. Math. Soc. 358 no. 3 (2006), 1347–1364.  DOI  MR  Zbl
  2. J. H. Conway and H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 no. 400 (1973), 87–94.  DOI  MR  Zbl
  3. J. H. Conway and H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 no. 401 (1973), 175–183.  DOI  MR  Zbl
  4. S. Eliahou and C. Lecouvey, Signed permutations and the four color theorem, Expo. Math. 27 no. 4 (2009), 313–340.  DOI  MR  Zbl
  5. S. Fomin and N. Reading, Root systems and generalized associahedra, in Geometric combinatorics, IAS/Park City Math. Ser. 13, American Mathematical Society, Providence, RI, 2007, pp. 63–131.  DOI  MR  Zbl
  6. S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 no. 1 (2008), 83–146.  DOI  MR  Zbl
  7. S. Fomin, L. Williams, and A. Zelevinsky, Introduction to cluster algebras. Chapters 4-5, 2017. arXiv:1707.07190 [math.CO].
  8. S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 no. 2 (2002), 497–529.  DOI  MR  Zbl
  9. S. Fomin and A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 no. 1 (2003), 63–121.  DOI  MR  Zbl
  10. F. Hurtado and M. Noy, Graph of triangulations of a convex polygon and tree of triangulations, Comput. Geom. 13 no. 3 (1999), 179–188.  DOI  MR  Zbl