Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Left and right $W$-weighted $G$-Drazin inverses and new matrix partial orders
David E. Ferreyra, Dijana Mosić, Albina N. Priori, and María Luz Llanes
Volume 69, no. 1
(2026),
pp. 125–141
Published online (final version): December 14, 2025
https://doi.org/10.33044/revuma.5023
Download PDF
Abstract
This paper investigates a way to define left and right versions of the class of $G$-Drazin
inverses for complex rectangular matrices. More precisely, the concepts of $W$-weighted
left and right $G$-Drazin inverses are introduced and characterized by means of a
simultaneous core-nilpotent decomposition as well as by a certain system of matrix
equations. Then new partial orders associated with these weighted generalized inverses are
presented and studied.
References
-
A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and applications, second ed., CMS Books Math./Ouvrages Math. SMC 15, Springer, New York, 2003. MR Zbl
-
S. L. Campbell and C. D. Meyer, Generalized inverses of linear transformations, Classics in Applied Mathematics 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. DOI MR Zbl
-
R. E. Cline and T. N. E. Greville, A Drazin inverse for rectangular matrices, Linear Algebra Appl. 29 (1980), 53–62. DOI MR Zbl
-
C. Coll, M. Lattanzi, and N. Thome, Weighted G-Drazin inverses and a new pre-order on rectangular matrices, Appl. Math. Comput. 317 (2018), 12–24. DOI MR Zbl
-
D. E. Ferreyra, M. Lattanzi, F. E. Levis, and N. Thome, Parameterized solutions $X$ of the system $AXA=AEA$ and $A^kEAX=XAEA^k$ for matrix $A$ having index $k$, Electron. J. Linear Algebra 35 (2019), 503–510. DOI MR Zbl
-
D. E. Ferreyra, M. Lattanzi, F. E. Levis, and N. Thome, Solving an open problem about the G-Drazin partial order, Electron. J. Linear Algebra 36 (2020), 55–66. DOI MR Zbl
-
A. Hernández, M. Lattanzi, and N. Thome, Weighted binary relations involving the Drazin inverse, Appl. Math. Comput. 253 (2015), 215–223. DOI MR Zbl
-
A. Hernández, M. Lattanzi, and N. Thome, On some new pre-orders defined by weighted Drazin inverses, Appl. Math. Comput. 282 (2016), 108–116. DOI MR Zbl
-
S. K. Mitra, P. Bhimasankaram, and S. B. Malik, Matrix partial orders, shorted operators and applications, Series in Algebra 10, World Scientific, Hackensack, NJ, 2010. DOI MR Zbl
-
D. Mosić, Weighted binary relations for operators on Banach spaces, Aequationes Math. 90 no. 4 (2016), 787–798. DOI MR Zbl
-
D. Mosić, Weighted G-Drazin inverse for operators on Banach spaces, Carpathian J. Math. 35 no. 2 (2019), 171–184. DOI MR Zbl
-
D. Mosić, G-outer inverse of Banach spaces operators, J. Math. Anal. Appl. 481 no. 2 (2020), Paper No. 123501. DOI MR Zbl
-
D. Mosić, Solvability to some systems of matrix equations using G-outer inverses, Electron. J. Linear Algebra 36 (2020), 265–276. MR Zbl Available at https://emis.de/ft/34762.
-
D. Mosić and D. S. Djordjević, Weighted pre-orders involving the generalized Drazin inverse, Appl. Math. Comput. 270 (2015), 496–504. DOI MR Zbl
-
D. Mosić and P. S. Stanimirović, Strong weighted GDMP inverse for operators, Bull. Iranian Math. Soc. 50 no. 3 (2024), Paper No. 43. DOI MR Zbl
-
D. Mosić and L. Wang, Left and right G-outer inverses, Linear Multilinear Algebra 70 no. 17 (2022), 3319–3344. DOI MR Zbl
-
H. Wang and X. Liu, Partial orders based on core-nilpotent decomposition, Linear Algebra Appl. 488 (2016), 235–248. DOI MR Zbl
-
Y. Wei, Integral representation of the $W$-weighted Drazin inverse, Appl. Math. Comput. 144 no. 1 (2003), 3–10. DOI MR Zbl
|