Revista de la
Unión Matemática Argentina
Left and right $W$-weighted $G$-Drazin inverses and new matrix partial orders
David E. Ferreyra, Dijana Mosić, Albina N. Priori, and María Luz Llanes

Volume 69, no. 1 (2026), pp. 125–141    

Published online (final version): December 14, 2025

https://doi.org/10.33044/revuma.5023

Download PDF

Abstract

This paper investigates a way to define left and right versions of the class of $G$-Drazin inverses for complex rectangular matrices. More precisely, the concepts of $W$-weighted left and right $G$-Drazin inverses are introduced and characterized by means of a simultaneous core-nilpotent decomposition as well as by a certain system of matrix equations. Then new partial orders associated with these weighted generalized inverses are presented and studied.

References

  1. A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and applications, second ed., CMS Books Math./Ouvrages Math. SMC 15, Springer, New York, 2003.  MR  Zbl
  2. S. L. Campbell and C. D. Meyer, Generalized inverses of linear transformations, Classics in Applied Mathematics 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.  DOI  MR  Zbl
  3. R. E. Cline and T. N. E. Greville, A Drazin inverse for rectangular matrices, Linear Algebra Appl. 29 (1980), 53–62.  DOI  MR  Zbl
  4. C. Coll, M. Lattanzi, and N. Thome, Weighted G-Drazin inverses and a new pre-order on rectangular matrices, Appl. Math. Comput. 317 (2018), 12–24.  DOI  MR  Zbl
  5. D. E. Ferreyra, M. Lattanzi, F. E. Levis, and N. Thome, Parameterized solutions $X$ of the system $AXA=AEA$ and $A^kEAX=XAEA^k$ for matrix $A$ having index $k$, Electron. J. Linear Algebra 35 (2019), 503–510.  DOI  MR  Zbl
  6. D. E. Ferreyra, M. Lattanzi, F. E. Levis, and N. Thome, Solving an open problem about the G-Drazin partial order, Electron. J. Linear Algebra 36 (2020), 55–66.  DOI  MR  Zbl
  7. A. Hernández, M. Lattanzi, and N. Thome, Weighted binary relations involving the Drazin inverse, Appl. Math. Comput. 253 (2015), 215–223.  DOI  MR  Zbl
  8. A. Hernández, M. Lattanzi, and N. Thome, On some new pre-orders defined by weighted Drazin inverses, Appl. Math. Comput. 282 (2016), 108–116.  DOI  MR  Zbl
  9. S. K. Mitra, P. Bhimasankaram, and S. B. Malik, Matrix partial orders, shorted operators and applications, Series in Algebra 10, World Scientific, Hackensack, NJ, 2010.  DOI  MR  Zbl
  10. D. Mosić, Weighted binary relations for operators on Banach spaces, Aequationes Math. 90 no. 4 (2016), 787–798.  DOI  MR  Zbl
  11. D. Mosić, Weighted G-Drazin inverse for operators on Banach spaces, Carpathian J. Math. 35 no. 2 (2019), 171–184.  DOI  MR  Zbl
  12. D. Mosić, G-outer inverse of Banach spaces operators, J. Math. Anal. Appl. 481 no. 2 (2020), Paper No. 123501.  DOI  MR  Zbl
  13. D. Mosić, Solvability to some systems of matrix equations using G-outer inverses, Electron. J. Linear Algebra 36 (2020), 265–276.  MR  Zbl Available at https://emis.de/ft/34762.
  14. D. Mosić and D. S. Djordjević, Weighted pre-orders involving the generalized Drazin inverse, Appl. Math. Comput. 270 (2015), 496–504.  DOI  MR  Zbl
  15. D. Mosić and P. S. Stanimirović, Strong weighted GDMP inverse for operators, Bull. Iranian Math. Soc. 50 no. 3 (2024), Paper No. 43.  DOI  MR  Zbl
  16. D. Mosić and L. Wang, Left and right G-outer inverses, Linear Multilinear Algebra 70 no. 17 (2022), 3319–3344.  DOI  MR  Zbl
  17. H. Wang and X. Liu, Partial orders based on core-nilpotent decomposition, Linear Algebra Appl. 488 (2016), 235–248.  DOI  MR  Zbl
  18. Y. Wei, Integral representation of the $W$-weighted Drazin inverse, Appl. Math. Comput. 144 no. 1 (2003), 3–10.  DOI  MR  Zbl