Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Additive and multiplicative relations with algebraic conjugates
Artūras Dubickas and Paulius Virbalas
Volume 69, no. 1
(2026),
pp. 143–154
Published online (final version): December 19, 2025
https://doi.org/10.33044/revuma.5106
Download PDF
Abstract
We prove that every nontrivial additive relation between algebraic conjugates of degree $d$ over $\mathbb{Q}$
has a corresponding multiplicative relation. The proof is
constructive. The reverse statement is not true. These findings supplement the research of
Smyth, Dixon, Girstmair and others. In addition, following a result of Kitaoka we show
that all additive relations between four distinct algebraic conjugates of degree 4 over $\mathbb{Q}$
can be described as $\mathbb{Z}$-linear combinations of several basic
nontrivial relations. On the other hand, we prove that an analogous result no longer holds
for algebraic conjugates of degree 6 over $\mathbb{Q}$.
References
-
E. Artin, Galois theory, second ed., Dover, Mineola, NY, 1998. MR Zbl
-
G. Baron, M. Drmota, and M. Skałba, Polynomial relations between polynomial roots, J. Algebra 177 no. 3 (1995), 827–846. DOI MR Zbl
-
J. D. Dixon, Polynomials with nontrivial relations between their roots, Acta Arith. 82 no. 3 (1997), 293–302. DOI MR Zbl
-
M. Drmota and M. Skałba, On multiplicative and linear independence of polynomial roots, in Contributions to general algebra 7 (Vienna, 1990), Hölder-Pichler-Tempsky, Vienna, 1991, pp. 127–135. MR Zbl
-
M. Drmota and M. Skałba, Relations between polynomial roots, Acta Arith. 71 no. 1 (1995), 65–77. DOI MR Zbl
-
P. Drungilas and A. Dubickas, On degrees of three algebraic numbers with zero sum or unit product, Colloq. Math. 143 no. 2 (2016), 159–167. DOI MR Zbl
-
A. Dubickas, On the degree of a linear form in conjugates of an algebraic number, Illinois J. Math. 46 no. 2 (2002), 571–585. MR Zbl Available at http://projecteuclid.org/euclid.ijm/1258136212.
-
A. Dubickas, Additive relations with conjugate algebraic numbers, Acta Arith. 107 no. 1 (2003), 35–43. DOI MR Zbl
-
A. Dubickas, Multiplicative relations with conjugate algebraic numbers, Ukraïn. Mat. Zh. 59 no. 7 (2007), 890–900, and in Ukrainian Math. J. 59 no. 7 (2007), 984–995. DOI MR Zbl
-
A. Dubickas and J. Jankauskas, Simple linear relations between conjugate algebraic numbers of low degree, J. Ramanujan Math. Soc. 30 no. 2 (2015), 219–235. MR Zbl
-
A. Dubickas and C. J. Smyth, Polynomials with three distinct zeros summing to zero (problem 11123), Amer. Math. Monthly 113 no. 10 (2006), 941–942, solution by R. Stong. DOI
-
K. Girstmair, Linear dependence of zeros of polynomials and construction of primitive elements, Manuscripta Math. 39 no. 1 (1982), 81–97. DOI MR Zbl
-
K. Girstmair, Linear relations between roots of polynomials, Acta Arith. 89 no. 1 (1999), 53–96. DOI MR Zbl
-
K. Girstmair, The Galois relation $x_1=x_2+x_3$ and Fermat over finite fields, Acta Arith. 124 no. 4 (2006), 357–370. DOI MR Zbl
-
K. Girstmair, The Galois relation $x_1=x_2+x_3$ for finite simple groups, Acta Arith. 127 no. 3 (2007), 301–303. DOI MR Zbl
-
K. Girstmair, The Galois relations $x_1=x_2+x_3$ and $x_1=x_2x_3$ for certain solvable groups, Ann. Sci. Math. Québec 32 no. 2 (2008), 171–174. MR Zbl
-
W. Hardt and J. Yin, Linear relations among Galois conjugates over $\mathbb{F}_q(t)$, Res. Number Theory 8 no. 2 (2022), Paper No. 34. DOI MR Zbl
-
Y. Kitaoka, Notes on the distribution of roots modulo a prime of a polynomial, Unif. Distrib. Theory 12 no. 2 (2017), 91–117. MR Zbl
-
V. A. Kurbatov, Galois extensions of prime degree and their primitive elements, Izv. Vysš. Učebn. Zaved. Matematika no. 1(176) (1977), 61–66, English transl.: Soviet Math. (Iz. VUZ) 21 no. 1 (1977), 49–53. MR Zbl
-
F. Lalande, Relations linéaires entre les racines d'un polynôme et anneaux de Schur, Ann. Sci. Math. Québec 27 no. 2 (2003), 169–175. MR Zbl
-
F. Lalande, La relation linéaire $a=b+c+\dots+t$ entre les racines d'un polynôme, J. Théor. Nombres Bordeaux 19 no. 2 (2007), 473–484. DOI MR Zbl
-
F. Lalande, À propos de la relation galoisienne $x_1=x_2+x_3$, J. Théor. Nombres Bordeaux 22 no. 3 (2010), 661–673. DOI MR Zbl
-
C. J. Smyth, Conjugate algebraic numbers on conics, Acta Arith. 40 no. 4 (1982), 333–346. DOI MR Zbl
-
C. J. Smyth, Additive and multiplicative relations connecting conjugate algebraic numbers, J. Number Theory 23 no. 2 (1986), 243–254. DOI MR Zbl
-
P. Virbalas, Linear relations between three conjugate algebraic numbers of low degree, J. Korean Math. Soc. 62 no. 2 (2025), 253–284. DOI MR Zbl
-
T. Zheng, Characterizing triviality of the exponent lattice of a polynomial through Galois and Galois-like groups, in Computer algebra in scientific computing, Lecture Notes in Comput. Sci. 12291, Springer, Cham, 2020, pp. 621–641. DOI MR Zbl
-
T. Zheng, A fast algorithm for computing multiplicative relations between the roots of a generic polynomial, J. Symbolic Comput. 104 (2021), 381–401. DOI MR Zbl
|