Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the sum of the eigenvalues of the distance Laplacian matrix of graphs with diameter three and four
Ummer Mushtaq, Shariefuddin Pirzada, and Saleem Khan
Volume 69, no. 1
(2026),
pp. 193–202
Published online (final version): February 3, 2026
https://doi.org/10.33044/revuma.5147
Download PDF
Abstract
We study an inequality proposed by Zhou et al. (2025) relating the distance Laplacian
eigenvalues of a connected graph to its Wiener index. For a connected graph $G$ on $n$
vertices, let $U_r(G)$ denote the sum of the $r$ largest distance Laplacian eigenvalues,
and let $W(G)$ be the Wiener index of $G$. Zhou et al. conjectured that, for all
$r=2,\dots,n$, one has $U_r(G) \le W(G) + \binom{r+2}{3}$. We prove this inequality for
several families of graphs. In particular, for $n\ge 95$ we verify it for all graphs in
$\Gamma_n$, that is, graphs of order $n$ and diameter 3 that contain a spanning tree of
diameter 3; as a consequence, the conjecture holds for all trees of diameter 3.
Moreover, we show that if $G$ has maximum degree $n-2$, then the inequality holds for all
$1\le r\le n$. Finally, we prove that sun graphs and partial sun-type graphs of diameter 4
also satisfy the inequality for all $1\le r\le n$.
References
-
A. Alhevaz, M. Baghipur, H. A. Ganie, and S. Pirzada, Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph, Linear Multilinear Algebra 69 no. 13 (2021), 2423–2440. DOI MR Zbl
-
M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 no. 1 (2013), 21–33. DOI MR Zbl
-
M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math. J. 64 no. 3 (2014), 751–761. DOI MR Zbl
-
H. Bai, The Grone–Merris conjecture, Trans. Amer. Math. Soc. 363 no. 8 (2011), 4463–4474. DOI MR Zbl
-
A. E. Brouwer and W. H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012. DOI MR Zbl
-
H. A. Ganie, A. M. Alghamdi, and S. Pirzada, On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture, Linear Algebra Appl. 501 (2016), 376–389. DOI MR Zbl
-
H. A. Ganie, S. Pirzada, B. A. Rather, and V. Trevisan, Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl. 588 (2020), 1–18. DOI MR Zbl
-
H. A. Ganie, S. Pirzada, B. A. Rather, and R. Ul Shaban, On Laplacian eigenvalues of graphs and Brouwer's conjecture, J. Ramanujan Math. Soc. 36 no. 1 (2021), 13–21. MR Zbl
-
H. A. Ganie, S. Pirzada, and V. Trevisan, On the sum of $k$ largest Laplacian eigenvalues of a graph and clique number, Mediterr. J. Math. 18 no. 1 (2021), Paper No. 15. DOI MR Zbl
-
H. A. Ganie, S. Pirzada, R. Ul Shaban, and X. Li, Upper bounds for the sum of Laplacian eigenvalues of a graph and Brouwer's conjecture, Discrete Math. Algorithms Appl. 11 no. 2 (2019), 1950028. DOI MR Zbl
-
R. Grone and R. Merris, The Laplacian spectrum of a graph. II, SIAM J. Discrete Math. 7 no. 2 (1994), 221–229. DOI MR Zbl
-
S. Khan, S. Pirzada, and A. Somasundaram, On graphs with distance Laplacian eigenvalues of multiplicity $n-4$, AKCE Int. J. Graphs Comb. 20 no. 3 (2023), 282–286. DOI MR Zbl
-
P. Kumar, S. Merajuddin, and S. Pirzada, Computing the sum of $k$ largest Laplacian eigenvalues of tricyclic graphs, Discrete Math. Lett. 11 (2023), 14–18. DOI MR Zbl
-
S. Pirzada and S. Khan, On the sum of distance Laplacian eigenvalues of graphs, Tamkang J. Math. 54 no. 1 (2023), 83–91. DOI MR Zbl
-
S. Pirzada and S. Khan, Distance Laplacian eigenvalues of graphs, and chromatic and independence number, Rev. Un. Mat. Argentina 67 no. 1 (2024), 145–159. DOI MR Zbl
-
B. A. Rather, H. A. Ganie, and Y. Shang, Distance Laplacian spectral ordering of sun type graphs, Appl. Math. Comput. 445 (2023), Paper No. 127847. DOI MR Zbl
-
Y. Zhou, L. Wang, and Y. Chai, Brouwer type conjecture for the eigenvalues of distance Laplacian matrix of a graph, Comput. Appl. Math. 44 no. 1 (2025), Paper No. 138. DOI MR Zbl
|