Revista de la
Unión Matemática Argentina
Core partial order for finite potent endomorphisms
Diego Alba Alonso

Volume 69, no. 1 (2026), pp. 203–225    

Published online (final version): February 4, 2026

https://doi.org/10.33044/revuma.5219

Download PDF

Abstract

The aim of this paper is to generalize the core inverse to arbitrary vector spaces using finite potent endomorphisms. As an application, the core partial order is studied in the set of finite potent endomorphisms (of index less than or equal to one), thus generalizing the theory of this order to infinite-dimensional vector spaces. Moreover, a pre-order is presented using the CN decomposition of a finite potent endomorphism. Finally, some questions concerning this pre-order are posed. Throughout the paper, some remarks are made in the framework of arbitrary Hilbert spaces using bounded finite potent endomorphisms.

References

  1. M. Argerami, F. Szechtman, and R. Tifenbach, On Tate's trace, Linear Multilinear Algebra 55 no. 6 (2007), 515–520.  DOI  MR  Zbl
  2. F. V. Atkinson, On relatively regular operators, Acta Sci. Math. (Szeged) 15 (1953), 38–56.  MR  Zbl
  3. O. M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 no. 5-6 (2010), 681–697.  DOI  MR  Zbl
  4. A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and applications, second ed., CMS Books Math./Ouvrages Math. SMC 15, Springer, New York, 2003.  MR  Zbl
  5. V. Cabezas Sánchez and F. Pablos Romo, Moore–Penrose inverse of some linear maps on infinite-dimensional vector spaces, Electron. J. Linear Algebra 36 (2020), 570–586.  DOI  MR  Zbl
  6. S. L. Campbell and C. D. Meyer, Jr., Generalized inverses of linear transformations, Surveys Reference Works Math. 4, Pitman, Boston, 1979.  MR  Zbl
  7. S. Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill, New York, 1966.  MR  Zbl
  8. Q. Huang, S. Chen, Z. Guo, and L. Zhu, Regular factorizations and perturbation analysis for the core inverse of linear operators in Hilbert spaces, Int. J. Comput. Math. 96 no. 10 (2019), 1943–1956.  DOI  MR  Zbl
  9. Y. Ke, L. Wang, and J. Chen, The core inverse of a product and $2 \times 2$ matrices, Bull. Malays. Math. Sci. Soc. 42 no. 1 (2019), 51–66.  DOI  MR  Zbl
  10. S. H. Kulkarni, M. T. Nair, and G. Ramesh, Some properties of unbounded operators with closed range, Proc. Indian Acad. Sci. Math. Sci. 118 no. 4 (2008), 613–625.  DOI  MR  Zbl
  11. H. Kurata, Some theorems on the core inverse of matrices and the core partial ordering, Appl. Math. Comput. 316 (2018), 43–51.  DOI  MR  Zbl
  12. S. B. Malik, Some more properties of core partial order, Appl. Math. Comput. 221 (2013), 192–201.  DOI  MR  Zbl
  13. K. Manjunatha Prasad and K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra 62 no. 6 (2014), 792–802.  DOI  MR  Zbl
  14. S. K. Mitra, P. Bhimasankaram, and S. B. Malik, Matrix partial orders, shorted operators and applications, Series in Algebra 10, World Scientific, Hackensack, NJ, 2010.  DOI  MR  Zbl
  15. D. Mosić, One-sided core partial orders on a ring with involution, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 no. 4 (2018), 1367–1379.  DOI  MR  Zbl
  16. D. Mosić, Condition numbers related to the core inverse of a complex matrix, Filomat 36 no. 11 (2022), 3785–3796.  MR
  17. M. Ould-Ali and B. Messirdi, On closed range operators in Hilbert space, Int. J. Algebra 4 no. 17-20 (2010), 953–958.  MR  Zbl
  18. F. Pablos Romo, Classification of finite potent endomorphisms, Linear Algebra Appl. 440 (2014), 266–277.  DOI  MR  Zbl
  19. F. Pablos Romo, Core-nilpotent decomposition and new generalized inverses of finite potent endomorphisms, Linear Multilinear Algebra 68 no. 11 (2020), 2254–2275.  DOI  MR  Zbl
  20. F. Pablos Romo, Group inverse of finite potent endomorphisms on arbitrary vector spaces, Oper. Matrices 14 no. 4 (2020), 1029–1042.  DOI  MR  Zbl
  21. F. Pablos Romo, On bounded finite potent operators on arbitrary Hilbert spaces, Bull. Malays. Math. Sci. Soc. 44 no. 6 (2021), 4085–4107.  DOI  MR  Zbl
  22. F. Pablos Romo, On Drazin–Moore–Penrose inverses of finite potent endomorphisms, Linear Multilinear Algebra 69 no. 4 (2021), 627–647.  DOI  MR  Zbl
  23. D. S. Rakić and D. S. Djordjević, Space pre-order and minus partial order for operators on Banach spaces, Aequationes Math. 85 no. 3 (2013), 429–448.  DOI  MR  Zbl
  24. J. Tate, Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4) 1 (1968), 149–159.  DOI  MR  Zbl
  25. H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl. 508 (2016), 289–300.  DOI  MR  Zbl
  26. H. Wang and X. Liu, Characterizations of the core inverse and the core partial ordering, Linear Multilinear Algebra 63 no. 9 (2015), 1829–1836.  DOI  MR  Zbl